24 research outputs found
Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA)
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists, however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070 / branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multi-parameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA
Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor
SHP2
is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the <i>PTPN11</i> gene involved in cell growth and differentiation
via the MAPK signaling pathway. SHP2 also purportedly plays an important
role in the programmed cell death pathway (PD-1/PD-L1). Because it
is an oncoprotein associated with multiple cancer-related diseases,
as well as a potential immunomodulator, controlling SHP2 activity
is of significant therapeutic interest. Recently in our laboratories,
a small molecule inhibitor of SHP2 was identified as an allosteric
modulator that stabilizes the autoinhibited conformation of SHP2.
A high throughput screen was performed to identify progressable chemical
matter, and X-ray crystallography revealed the location of binding
in a previously undisclosed allosteric binding pocket. Structure-based
drug design was employed to optimize for SHP2 inhibition, and several
new protein–ligand interactions were characterized. These studies
culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine
(SHP099, <b>1</b>), a potent, selective, orally bioavailable,
and efficacious SHP2 inhibitor
Figure S3 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Binding kinetics and potency of [2] towards PI3Kα</p
Figure S6 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Varied levels of PI3Kα-dependency across cell lines</p
Table S2 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Time-dependence of biochemical inhibition and mutant selectivity of RLY-2608</p
Supplemental Text from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Synthesis of mutant-selective allosteric PI3Kα inhibitors</p
Figure S3 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Binding kinetics and potency of [2] towards PI3Kα</p
Figure S4 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Binding kinetics and potency of [1] towards tailless PI3Kα</p
Supplemental Text from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Synthesis of mutant-selective allosteric PI3Kα inhibitors</p
Figure S1 from Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia
Activation loop residues 937-954 are more disordered in mutant vs. wildtype PI3Kα</p