59 research outputs found

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology

    Thomas Rotch accounts payable, 1788-1791

    No full text
    Nathanial Cary submits a statement to Thomas Rotch for Rotch's purchase of broad cloth, 3 pounds sterling. 6" x 3.5

    Sensitivity to Fas-mediated apoptosis is determined below receptor level in human vascular smooth muscle cells

    No full text
    Abstract —Despite Fas expression, many cells resist Fas-induced apoptosis. Although differences in surface Fas expression can explain Fas resistance, multiple proteins below receptor level also inhibit Fas-induced apoptosis. To examine the mechanism of Fas resistance, we studied Fas-induced apoptosis in human medial vascular smooth muscle cells (VSMCs) from healthy coronary arteries. VSMCs showed marked heterogeneity to Fas-induced apoptosis, exhibiting both Fas-resistant (98.1±2.3% viable, n=4, P =NS) and Fas-sensitive (31.3±2.6% viable, n=3, P &lt;0.01) cells. Fas-resistant VSMCs expressed surface Fas and could recruit RIP, indicating that functional receptor complexes were formed. However, Fas-resistant cells showed reduced expression of FADD, Fas ligand, and caspases 3, 7, and 8 and increased expression of FLIP and c-IAP-1. Fas-induced apoptosis was associated with cleavage of caspase 3 and blocked by inhibitors of caspase 3 or 8 but not caspase 1, 6, or 7. Selective inhibition of caspase 3 or 8 by antisense transfection inhibited Fas-induced apoptosis, but their reexpression could not rescue the Fas-resistant phenotype. In vivo, medial VSMCs showed marked heterogeneity of expression of caspase 3. We conclude that Fas sensitivity is determined not only by expression of surface Fas but by differential expression of Fas-signaling proteins below receptor level. Subpopulations of cells within the same tissue have different sensitivities to apoptosis, determined by expression of specific death-signaling proteins. </jats:p
    • …
    corecore