5 research outputs found

    Rapid reduction of herbicide susceptibility in junglerice by recurrent selection with sublethal dose of herbicides and heat stress

    Get PDF
    Global climate change, specifically rising temperature, can alter the molecular physiology of weedy plants. These changes affect herbicide efficacy and weed management. This research aimed to investigate the combined effect of heat stress (HS) and sublethal doses of herbicides (four active ingredients) on adaptive gene expression and efficacy of herbicide on Echinochloa colona (L.) Link (junglerice). Three factors were evaluated; factor A was E. colona generation (G0-original population from susceptible standard; G1 and G2 were progenies of recurrent selection), factor B was herbicide treatment (florpyrauxifen-benzyl, glufosinate-ammonium, imazethapyr, quinclorac and nontreated check) and factor C was HS (30 and 45 ◦C). The herbicides were applied at 0.125× the recommended dose. Recurrent exposure to HS, combined with sublethal doses of herbicides, favors the selection of plants less susceptible to the herbicide. Upregulation of defense (antioxidant) genes (APX: Ascorbate peroxidase), herbicide detoxification genes (CYP450 family: Cytochrome P450), stress acclimation genes (HSP: Heat shock protein, TPP: Trehalose phosphate phosphatase and TPS: Trehalose phosphate synthase) and genes related to herbicide conjugation (UGT: UDP Glucosyltransferase) was significant. The positive regulation of these genes may promote increased tolerance of E. colona to these herbicides

    PPO2 Mutations in Amaranthus palmeri: Implications on Cross-Resistance

    No full text
    In Arkansas, resistance to protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides in Amaranthus palmeri S. Wats. is mainly due to target site mutations. Although A. palmeri PPO-mutations are well investigated, the cross-resistance that each ppo mutant endows to weed populations is not yet well understood. We aimed to evaluate the response of PPO-resistant A. palmeri accessions, harboring the ppo2 mutations ΔG210 and G399A, to multiple PPO-inhibiting herbicides. Six resistant and one susceptible field accessions were subjected to a dose–response assay with fomesafen, and selected survivors from different fomesafen doses were genotyped to characterize the mutation profile. The level of resistance to fomesafen was determined and a cross-resistance assay was conducted with 1 and 2 times the labeled doses of selected PPO herbicides. The accession with higher predicted dose to control 50% of the population (ED50) had a higher frequency of ΔG210-homozygous survivors. Survivors harboring both mutations, and those that were ΔG210-homozygous, incurred less injury at the highest fomesafen rate tested (1120 g ai ha−1). The populations with a high frequency of ΔG210-homozygous survivors, and those with individuals harboring ΔG210 + G399A mutations, exhibited high potential for cross-resistance to other PPO herbicides. The new PPO–herbicide chemistries (saflufenacil, trifludimoxazin) generally controlled the PPO-resistant populations

    Rapid Reduction of Herbicide Susceptibility in Junglerice by Recurrent Selection with Sublethal Dose of Herbicides and Heat Stress

    No full text
    Global climate change, specifically rising temperature, can alter the molecular physiology of weedy plants. These changes affect herbicide efficacy and weed management. This research aimed to investigate the combined effect of heat stress (HS) and sublethal doses of herbicides (four active ingredients) on adaptive gene expression and efficacy of herbicide on Echinochloa colona (L.) Link (junglerice). Three factors were evaluated; factor A was E. colona generation (G0-original population from susceptible standard; G1 and G2 were progenies of recurrent selection), factor B was herbicide treatment (florpyrauxifen-benzyl, glufosinate-ammonium, imazethapyr, quinclorac and nontreated check) and factor C was HS (30 and 45 °C). The herbicides were applied at 0.125× the recommended dose. Recurrent exposure to HS, combined with sublethal doses of herbicides, favors the selection of plants less susceptible to the herbicide. Upregulation of defense (antioxidant) genes (APX: Ascorbate peroxidase), herbicide detoxification genes (CYP450 family: Cytochrome P450), stress acclimation genes (HSP: Heat shock protein, TPP: Trehalose phosphate phosphatase and TPS: Trehalose phosphate synthase) and genes related to herbicide conjugation (UGT: UDP Glucosyltransferase) was significant. The positive regulation of these genes may promote increased tolerance of E. colona to these herbicides

    Recurrent Selection with Low Herbicide Rates and Salt Stress Decrease Sensitivity of Echinochloa colona to Imidazolinone

    No full text
    Weeds represent an increasing challenge for crop systems since they have evolved adaptability to adverse environmental conditions, such as salinity stress. Herbicide effectiveness can be altered by the quality of water in which the weed is growing. This research aimed to study the combined effect of salt stress and recurrent selection with a sublethal dose of imidazolinone herbicides in the shifting of the sensitivity of Echinochloa colona (L.) Link (junglerice) to imidazolinone herbicides. This study was divided into two experiments; in experiment I, three recurrent selection cycles were conducted in Pelotas/RS/Brazil with imazapic + imazapyr at 0.125× the field rate; and in experiment II, three recurrent selection cycles were conducted in Fayetteville/AR/USA with imazethapyr, at 0.125× the recommended dose. Salt stress was implemented by irrigation with 120 mM sodium chloride (NaCl) solution. The effective dose for 50% control of the population (ED50) values increased from the field population to the second generation (G2) after recurrent selection with a sublethal dose of imidazolinone combined with salt stress, supporting the hypothesis of reduced susceptibility by the combination of these abiotic factors. Recurrent exposure to a sublethal dose of imazapic + imazapyr or imazethapyr, combined with salt stress, reduced susceptibility of Echinochloa colona (L.) plants to imidazolinone herbicides
    corecore