30,888 research outputs found

    Anderson localization on the Falicov-Kimball model with Coulomb disorder

    Full text link
    The role of Coulomb disorder is analysed in the Anderson-Falicov-Kimball model. Phase diagrams of correlated and disordered electron systems are calculated within dynamical mean-field theory applied to the Bethe lattice, in which metal-insulator transitions led by structural and Coulomb disorders and correlation can be identified. Metallic, Mott insulator, and Anderson insulator phases, as well as the crossover between them are studied in this perspective. We show that Coulomb disorder has a relevant role in the phase-transition behavior as the system is led towards the insulator regime

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    Polarimetry of Compact Symmetric Objects

    Get PDF
    We present multi-frequency VLBA observations of two polarized Compact Symmetric Objects (CSOs), J0000+4054 and J1826+1831, and a polarized CSO candidate, J1915+6548. Using the wavelength-squared dependence of Faraday rotation, we obtained rotation measures (RMs) of -180 \pm 10 rad m^-2 and 1540 \pm 7 rad m^-2 for the latter two sources. These are lower than what is expected of CSOs (several 1000 rad m^-2) and, depending on the path length of the Faraday screens, require magnetic fields from 0.03 to 6 \mu G. These CSOs may be more heavily affected by Doppler boosting than their unpolarized counterparts, suggesting that a jet-axis orientation more inclined towards the line of sight is necessary to detect any polarization. This allows for low RMs if the polarized components are oriented away from the depolarizing circumnuclear torus. These observations also add a fourth epoch to the proper motion studies of J0000+4054 and J1826+1831, constraining their kinematic age estimates to >610 yrs and 2600 \pm 490 yrs, respectively. The morphology, spectrum, and component motions of J1915+6548 are discussed in light of its new classification as a CSO candidate, and its angle to the line of sight (~50\deg) is determined from relativistic beaming arguments.Comment: 29 pages, including 9 figures; Accepted by Astrophysical Journal, 16 Feb 0

    Large Firm Dynamics and the Business Cycle

    Get PDF
    Do large firm dynamics drive the business cycle? We answer this question by developing a quantitative theory of aggregate fluctuations caused by firm-level disturbances alone. We show that a standard heterogeneous firm dynamics setup already contains in it a theory of the business cycle, without appealing to aggregate shocks. We offer a complete analytical characterization of the law of motion of the aggregate state in this class of models – the firm size distribution – and show that the resulting closed form solutions for aggregate output and productivity dynamics display: (i) persistence, (ii) volatility and (iii) time-varying second moments. We explore the key role of moments of the firm size distribution – and, in particular, the role of large firm dynamics – in shaping aggregate fluctuations, theoretically, quantitatively and in the data

    A time of flight method to measure the speed of sound using a stereo sound card

    Full text link
    We present an inexpensive apparatus for measuring the speed of sound, with a time of flight method, using a computer with a stereo sound board. Students measure the speed of sound by timing the delay between the arrivals of a pulse to two microphones placed at different distances from the source. It can serve as a very effective demonstration, providing a quick measurement of the speed of sound in air; we have used it with great success in Open Days in our Department. It can also be used for a full fledged laboratory determination of the speed of sound in air.Comment: Accepted for publication in The Physics Teache
    • …
    corecore