32,018 research outputs found

    Phosphorene nanoribbons

    Full text link
    Edge-induced gap states in finite phosphorene layers are examined using analytical models and density functional theory. The nature of such gap states depends on the direction of the cut. Armchair nanoribbons are insulating, whereas nanoribbons cut in the perpendicular direction (with zigzag and cliff-type edges) are metallic, unless they undergo a reconstruction or distortion with cell doubling, which opens a gap. All stable nanoribbons with unsaturated edges have gap states that can be removed by hydrogen passivation. Armchair nanoribbon edge states decay exponentially with the distance to the edge and can be described by a nearly-free electron model

    2D materials and van der Waals heterostructures

    Full text link
    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With new 2D materials, truly 2D physics has started to appear (e.g. absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc). Novel heterostructure devices are also starting to appear - tunneling transistors, resonant tunneling diodes, light emitting diodes, etc. Composed from individual 2D crystals, such devices utilize the properties of those crystals to create functionalities that are not accessible to us in other heterostructures. We review the properties of novel 2D crystals and how their properties are used in new heterostructure devices

    Charge orders, magnetism and pairings in the cuprate superconductors

    Full text link
    We review the recent developments in the field of cuprate superconductors with the special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic (AF) quantum critical point (QCP) in two dimensions, in which preemptive orders in the charge and superconducting (SC) sectors emerged, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SU(2) pairing fluctuations are dominant and argue that they are unstable towards the formation of a Resonant Peierls Excitonic (RPE) state at the pseudogap (PG) temperature T∗T^{*}. We discuss the implications of this scenario for a few key experiments.Comment: 16 pages, 17 figure
    • …
    corecore