3,273 research outputs found

    High temperature behavior of Sr-doped layered cobaltites Y(Ba1-xSrx)Co2O5.5: phase stability and structural properties

    Full text link
    In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{\delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported in the temperature range 20 K <= T <= 570 K, as well as high resolution neutron diffraction experiments at selected temperatures. Starting from the as-synthesized samples with {\delta} ~ 0.5, we show that the room temperature phases remain stable up to 550 K, where they start loosing oxygen and transform to a vacancy-disordered "112" structure with tetragonal symmetry. Our results also show how the so-called "122" structure can be stabilized at high temperature (around 450 K) in a sample in which the addition of Sr at the Ba site had suppressed its formation. In addition, we present the structural and magnetic properties of the resulting samples with a new oxygen content {\delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange

    Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.

    Get PDF
    With the continued emergence of risk loci from Genome-Wide Association studies and variants of uncertain significance identified from patient sequencing, better methods are required to translate these human genetic findings into improvements in public health. Here we combine CRISPR/Cas9 gene editing with an innovative high-throughput genotyping pipeline utilizing KASP (Kompetitive Allele-Specific PCR) genotyping technology to create scarless isogenic cell models of cancer variants in ~1 month. We successfully modeled two novel variants previously identified by our lab in the PALB2 gene in HEK239 cells, resulting in isogenic cells representing all three genotypes for both variants. We also modeled a known functional risk SNP of colorectal cancer, rs6983267, in HCT-116 cells. Cells with extremely low levels of gene editing could still be identified and isolated using this approach. We also introduce a novel molecular assay, ChIPnQASO (Chromatin Immunoprecipitation and Quantitative Allele-Specific Occupation), which uses the same technology to reveal allele-specific function of these variants at the DNA-protein interaction level. We demonstrated preferential binding of the transcription factor TCF7L2 to the rs6983267 risk allele over the non-risk. Our pipeline provides a platform for functional variant discovery and validation that is accessible and broadly applicable for the progression of efforts towards precision medicine

    Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador

    Get PDF
    This study presents a method to assess the sensitivity of hydropower generation to uncertain water resource availability driven by future climate change. A hydrology-electricity modelling framework was developed and applied to six rivers where 10 hydropower stations operate, which together represent over 85% of Ecuador’s installed hydropower capacity. The modelling framework was then forced with bias-corrected output from 40 individual global circulation model experiments from the Coupled Model Intercomparison Project 5 for the Representative Concentration Pathway 4.5 scenario. Impacts of changing climate on hydropower resource were quantified for 2071–2100 relative to a baseline period 1971–2000. Results show a wide annual average inflow range from + 277% to − 85% when individual climate experiments are assessed. The analysis also show that hydropower generation in Ecuador is highly uncertain and sensitive to climate change since variations in inflow to hydropower stations would directly result in changes in the expected hydropower potential. Annual hydroelectric power production in Ecuador is found to vary between − 55 and + 39% of the mean historical output when considering future inflow patterns to hydroelectric reservoirs covering one standard deviation of the CMIP5 RCP4.5 climate ensemble

    Phase diagram and magnetic properties of La1−x_{1-x}Cax_xMnO3_3 compound for 0≤x≤0.230\leq x \leq 0.23

    Full text link
    In this article a detailed study of La1−x_{1-x}Cax_xMnO3_3 (0≤x≤0.230\leq x \leq 0.23) phase diagram using powder x-ray diffraction and magnetization measurements is presented. Unfortunately, in the related literature no properly characterized samples have been used, with consequence the smearing of the real physics in this complicated system. As the present results reveal, there are two families of samples. The first family concerns samples prepared in atmosphere (P(O2)=0.2P({\rm O}_2)=0.2 Atm) which are all ferromagnetic with Curie temperature rising with xx. The second family concerns samples, where a post annealing in nearly zero oxygen partial pressure is applied. These samples show a canted antiferromagnetic structure for 0≤x≤0.10\leq x \leq 0.1 below TNT_N, while for 0.125≤x<0.230.125\leq x <0.23 an unconventional ferromagnetic insulated phase is present below TcT_c. The most important difference between nonstoichiometric and stoichiometric samples concerning the magnetic behavior, is the anisotropy in the exchange interactions, in the stoichiometric samples putting forward the idea that a new orbital ordered phase is responsible for the ferromagnetic insulating regime in the La1−x_{1-x}Cax_xMnO3_3 compound
    • …
    corecore