13,171 research outputs found

    Dynamics of viscous dissipative gravitational collapse: A full causal approach

    Full text link
    The Misner and Sharp approach to the study of gravitational collapse is extended to the viscous dissipative case in, both, the streaming out and the diffusion approximations. The dynamical equation is then coupled to causal transport equations for the heat flux, the shear and the bulk viscosity, in the context of Israel--Stewart theory, without excluding the thermodynamics viscous/heat coupling coefficients. The result is compared with previous works where these later coefficients were neglected and viscosity variables were not assumed to satisfy causal transport equations. Prospective applications of this result to some astrophysical scenarios are discussed.Comment: 22 pages Latex. To appear in Int. J. Mod. Phys. D. Typos correcte

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    New magnetic phase in metallic V_{2-y}O_3 close to the metal insulator transition

    Full text link
    We have observed two spin density wave (SDW) phases in hole doped metallic V_{2-y}O_3, one evolves from the other as a function of doping, pressure or temperature. They differ in their response to an external magnetic field, which can also induce a transition between them. The phase boundary between these two states in the temperature-, doping-, and pressure-dependent phase diagram has been determined by magnetization and magnetotransport measurements. One phase exists at high doping level and has already been described in the literature. The second phase is found in a small parameter range close to the boundary to the antiferromagnetic insulating phase (AFI). The quantum phase transitions between these states as a function of pressure and doping and the respective metamagnetic behavior observed in these phases are discussed in the light of structurally induced changes of the band structure.Comment: REVTeX, 8 pages, 12 EPS figures, submitted to PR

    Constraints on the Recent Rate of Lunar Regolith Accumulation from Diviner Observations

    Get PDF
    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances pre dicted to be covered by continuous ejecta. However, most of these sur faces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrar ed observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperat ures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highla nds), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth . Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differen ces in the thickness of accumulated regolith. However, away from youn g craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculat ed H values for young craters show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42, abstract 2437). This method could, in principle, be extended to other airless bodies (e.g., aste roids), which would in turn constrain the recent impactor flux

    Vector bundles on the projective line and finite domination of chain complexes

    Get PDF
    Finitely dominated chain complexes over a Laurent polynomial ring in one indeterminate are characterised by vanishing of their Novikov homology. We present an algebro-geometric approach to this result, based on extension of chain complexes to sheaves on the projective line. We also discuss the K-theoretical obstruction to extension.Comment: v1: 11 page

    Maximal Acceleration Is Nonrotating

    Get PDF
    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry axis, and in a slowly rotating gravitational field, including the weak-field limit, where the SCAM is shown to be counter-rotating relative to infinity. These formulas are evaluated in particular detail for the Kerr-Newman metric. Various other congruences are also defined, such as a Stationary Congruence Rotating at Minimum (SCRAM), and Stationary Worldlines Accelerating Radially Maximally (SWARM), both of which coincide with a SCAM on an equatorial plane of reflection symmetry. Applications are also made to the gravitational fields of maximally rotating stars, the Sun, and the Solar System.Comment: 64 pages, no figures, LaTeX, Sections 10 and 11 added with applications to maximally rotating stellar models of Cook, Shapiro, and Teukolsky and to the Sun and Solar System with recent data from Pijpers that the Sun has angular momentum 1.80 x 10^{75} = 0.216 M^2 = 47 hectares = 116 acres (with 0.8% uncertainty) and quadrupole moment (2.18 x 10^{-7})MR^2 = 1.60 x 10^{14} m^3 = 3.7 x 10^{117} (with 3% uncertaity), accepted Feb. 27 for Classical and Quantum Gravit

    Dynamics of dissipative gravitational collapse

    Full text link
    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel--Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.Comment: Some misprints in eqs.(38) and (39) correcte

    Effects of Possible ΔB=ΔQ\Delta B =- \Delta Q Transitions in Neutral BB Meson Decays}

    Full text link
    We explore the possibility that the existing data on like-sign dileptons at the Υ(4S)\Upsilon (4S) resonance consist of events arising from Bd0Bˉd0B_{d}^0 -\bar B_{d}^0 mixing and also from ΔB=ΔQ\Delta B = - \Delta Q transitions. The consequences of these nonstandard transitions for certain time-asymmetries which are likely to be measured at the BB factories are studied.Comment: {\LARGE \bf 10 pages, no figures, process using latex, TIFR/TH/93-5

    Decay-Time Asymmetries at the B-Factories

    Full text link
    Absract (Invited talk at the X DAE High Energy Physics symposium in December 1992, held at Tata Institute of Fundamental Research, Bombay)Comment: 20pages, TIFR/TH/93-1
    corecore