36,968 research outputs found
KIC 2856960: the impossible triple star
KIC 2856960 is a star in the Kepler field which was observed by Kepler for 4
years. It shows the primary and secondary eclipses of a close binary of 0.258d
as well as complex dipping events that last for about 1.5d at a time and recur
on a 204d period. The dips are thought to result when the close binary passes
across the face of a third star. In this paper we present an attempt to model
the dips. Despite the apparent simplicity of the system and strenuous efforts
to find a solution, we find that we cannot match the dips with a triple star
while satisfying Kepler's laws. The problem is that to match the dips the
separation of the close binary has to be larger than possible relative to the
outer orbit given the orbital periods. Quadruple star models can get round this
problem but require the addition of a so-far undetected intermediate period of
order 5 -- 20d that has be a near-perfect integer divisor of the outer 204d
period. Although we have no good explanation for KIC 2856960, using the full
set of Kepler data we are able to update several of its parameters. We also
present a spectrum showing that KIC 2856960 is dominated by light from a K3- or
K4-type star.Comment: 11 pages, 13 figures, accepted for publication in MNRAS August 21,
201
Involution products in Coxeter groups
For W a Coxeter group, let
= {w ∈ W | w = xy where x, y ∈ W and x 2 = 1 = y 2}.
It is well known that if W is finite then W = . Suppose that w ∈ . Then the minimum value of ℓ(x) + ℓ(y) – ℓ(w), where x, y ∈ W with w = xy and x 2 = 1 = y 2, is called the excess of w (ℓ is the length function of W). The main result established here is that w is always W-conjugate to an element with excess equal to zero
Thermodynamics and Stability of Higher Dimensional Rotating (Kerr) AdS Black Holes
We study the thermodynamic and gravitational stability of Kerr anti-de Sitter
black holes in five and higher dimensions. We show, in the case of equal
rotation parameters, , that the Kerr-AdS background metrics become
stable, both thermodynamically and gravitationally, when the rotation
parameters take values comparable to the AdS curvature radius. In turn, a
Kerr-AdS black hole can be in thermal equilibrium with the thermal radiation
around it only when the rotation parameters become not significantly smaller
than the AdS curvature radius. We also find with equal rotation parameters that
a Kerr-AdS black hole is thermodynamically favored against the existence of a
thermal AdS space, while the opposite behavior is observed in the case of a
single non-zero rotation parameter. The five dimensional case is however
different and also special in that there is no high temperature thermal AdS
phase regardless of the choice of rotation parameters. We also verify that at
fixed entropy, the temperature of a rotating black hole is always bounded above
by that of a non-rotating black hole, in four and five dimensions, but not in
six and more dimensions (especially, when the entropy approaches zero or the
minimum of entropy does not correspond to the minimum of temperature). In this
last context, the six dimensional case is marginal.Comment: 15 pages, 23 eps figures, RevTex
Recurrence relation for the 6j-symbol of su_q(2) as a symmetric eigenvalue problem
A well known recurrence relation for the 6j-symbol of the quantum group
su_q(2) is realized as a tridiagonal, symmetric eigenvalue problem. This
formulation can be used to implement an efficient numerical evaluation
algorithm, taking advantage of existing specialized numerical packages. For
convenience, all formulas relevant for such an implementation are collected in
the appendix. This realization is a byproduct of an alternative proof of the
recurrence relation, which generalizes a classical (q=1) result of Schulten and
Gordon and uses the diagrammatic spin network formalism of Temperley-Lieb
recoupling theory to simplify intermediate calculations.Comment: v3: 13 pages, ws-ijgmmp; minor corrections, slight update to
presentation; close to published versio
Transonic Elastic Model for Wiggly Goto-Nambu String
The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic
string can be effectively represented by an elastic string model of exactly
transonic type (with energy density inversely proportional to its tension
) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure
Skylab-EREP investigations of wetlands ecology
There are no author-identified significant results in this report
Skylab - EREP investigations of wetlands ecology
There are no author-identified significant results in this report
- …