13 research outputs found

    I-V characteristics of in-plane and out-of-plane strained edge-hydrogenated armchair graphene nanoribbons

    Full text link
    The effects of tensile strain on the current-voltage (I-V) characteristics of hydrogenated-edge armchair graphene nanoribbons (HAGNRs) are investigated by using DFT theory. The strain is introduced in two different ways related to the two types of systems studied in this work: in-plane strained systems (A), and out-of-plane strained systems due to bending (B). These two kinds of strain lead to make a distinction among three cases: in-plane strained systems with strained electrodes (A1) and with unstrained electrodes (A2), and out-of-plane homogeneously strained systems with unstrained, fixed electrodes (B). The systematic simulations to calculate the electronic transmission between two electrodes were focused on systems of 8 and 11 dimers in width. The results show that the differences between cases A2 and B are negligible, even though the strain mechanisms are different: in the plane case, the strain is uniaxial along its length, while in the bent case the strain is caused by the arc deformation. Based on the study, a new type of NEMS-solid state switching device is proposed.Comment: 22 pages, 7 figure

    Graphene Squeeze-Film Pressure Sensors

    Full text link
    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area

    Colorimetry technique for scalable characterization of suspended graphene

    Full text link
    Previous statistical studies on the mechanical properties of chemical-vapor-deposited (CVD) suspended graphene membranes have been performed by means of measuring individual devices or with techniques that affect the material. Here, we present a colorimetry technique as a parallel, non-invasive, and affordable way of characterizing suspended graphene devices. We exploit Newton rings interference patterns to study the deformation of a double-layer graphene drum 13.2 micrometer in diameter when a pressure step is applied. By studying the time evolution of the deformation, we find that filling the drum cavity with air is 2-5 times slower than when it is purged

    Visualizing the motion of graphene nanodrums

    Full text link
    Membranes of suspended two-dimensional materials show a large variability in mechanical properties, in part due to static and dynamic wrinkles. As a consequence, experiments typically show a multitude of nanomechanical resonance peaks, which makes an unambiguous identification of the vibrational modes difficult. Here, we probe the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer. By simultaneously visualizing the local phase and amplitude of the driven motion, we show that unexplained spectral features represent split degenerate modes. When taking these into account, the resonance frequencies up to the eighth vibrational mode agree with theory. The corresponding displacement profiles however, are remarkably different from theory, as small imperfections increasingly deform the nodal lines for the higher modes. The Brownian motion, which is used to calibrate the local displacement, exhibits a similar mode pattern. The experiments clarify the complicated dynamic behaviour of suspended two-dimensional materials, which is crucial for reproducible fabrication and applications

    Graphene mechanical pixels for Interferometric MOdulator Displays (GIMOD)

    Full text link
    Graphene, the carbon monolayer and 2D allotrope of graphite, has the potential to impact technology with a wide range of applications such as optical modulators for high-speed communications. In contrast to modulation devices that rely on plasmonic or electronic effects, MEMS-based modulators can have wider tuning ranges albeit at a lower operating frequency. These properties make electro-optic mechanical modulators ideal for reflective-type display technologies as has been demonstrated previously with SiN membranes in Interferometric MOdulator Displays (IMODs). Despite their low-power consumption and performance in bright environments, IMODs suffer from low frame rates and limited color gamut. Double-layer graphene (DLG) membranes grown by chemical vapor deposition (CVD) can also recreate the interference effect like in IMODs as proven with drumheads displaying Newton's rings. Here, we report on the electro-optical response of CVD DLG mechanical pixels by measuring the change in wavelength-dependent reflectance of a suspended graphene drumhead as a function of electrical gating. We use a spectrometer to measure the wavelength spectrum at different voltages, and find a good agreement with a model based on light interference. Moreover, to verify that gas compression effects do not play an important role, we use a stroboscopic illumination technique to study the electro-optic response of these graphene pixels at frequencies up to 400 Hz. Based on these findings, we demonstrate a continuous full-spectrum reflective-type pixel technology with a Graphene Interferometric MOdulator Display (GIMOD) prototype of 2500 pixels per inch (ppi) equivalent to more than 12K resolution.Comment: 13 pages, 4 figure
    corecore