2,263 research outputs found

    Notes on the germination of the endangered species Sclerolaena napiformis (Chenopodiaceae)

    Get PDF
    Sclerolaena napiformis is found on fertile plains in northern Victoria and southern New South Wales and is endangered Australia-wide. Introductory work on its germination shows that seeds cannot germinate until the woody fruit has broken down. The seeds tolerate a wide range of temperatures for germination, suggesting that germination occurs regardless of season if sufficient rain falls. Seed ageing effects reduce seed viability, but some seed is still viable after two years storage. Flower buds first appear 21 weeks from germination and some fruits have matured by week 29. In the field, plants die back to their taproots in late autumn and resprout in spring. Ninety percent of tagged plants were still alive two years later. The physiological seed dormancy imposed by an intact fruit wall provides a mechanism for the development of persistent soil seed banks. Work on the ecological significance of such banks is needed. The literature on interactions between Sclerolaena fruit and seed biology and ants is briefly reviewed

    Unsteady transition measurements on a pitching three-dimensional wing

    Get PDF
    Boundary layer transition measurements were made during an experimental study of the aerodynamics of a rectangular wing undergoing unsteady pitching motions. The wing was tested at chordwise Mach numbers between 0.2 and 0.6, at sweep angles of 0, 15, and 30 deg, and for steady state, sinusoidal, and constant pitch rate motions. The model was scaled to represent a full size helicopter rotor blade, with chord Reynolds numbers between 2 and 6 x 10(exp 6). Sixteen surface hot-film gages were located along three spanwise stations: 0.08, 0.27, and 0.70 chords from the wing tip. Qualitative heat transfer information was obtained to identify the unsteady motion of the point of transition to turbulence. In combination with simultaneous measurements of the unsteady surface pressure distributions, the results illustrate the effects of compressibility, sweep, pitch rate, and proximity to the wing tip on the transition and relaminarization locations

    Airfoil stall penetration at constant pitch rate and high Reynolds number

    Get PDF
    The model wing consists of a set of fiberglass panels mounted on a steel spar that spans the 8 ft test section of the UTRC Large Subsonic Wind Tunnel. The first use of this system was to measure surface pressures and flow conditions for a series of constant pitch rate ramps and sinusoidal oscillations a Mach number range, a Reynolds number range, and a pitch angle range. It is concluded that an increased pitch rate causes stall events to be delayed, strengthening of the stall vortex, increase in vortex propagation, and increase in unsteady airloads. The Mach number range causes a supersonic zone near the leading edge, stall vortex to be weaker, and a reduction of unsteady airloads

    Analysis of unswept and swept wing chordwise pressure data from an oscillating NACA 0012 airfoil experiment. Volume 1: Technical Report

    Get PDF
    The unsteady chordwise force response on the airfoil surface was investigated and its sensitivity to the various system parameters was examined. A further examination of unsteady aerodynamic data on a tunnel spanning wing (both swept and unswept), obtained in a wind tunnel, was performed. The main body of this data analysis was carried out by analyzing the propagation speed of pressure disturbances along the chord and by studying the behavior of the unsteady part of the chordwise pressure distribution at various points of the airfoil pitching cycle. It was found that Mach number effects dominate the approach to and the inception of both static and dynamic stall. The stall angle decreases as the Mach number increases. However, sweep dominates the load behavior within the stall regime. Large phase differences between unswept and swept responses, that do not exist at low lift coefficient, appear once the stall boundary is penetrated. It was also found that reduced frequency is not a reliable indicator of the unsteady aerodynamic response in the high angle of attack regime

    Damage tolerance analysis of aircraft reinforced panels

    Get PDF
    This work is aimed at reproducing numerically a campaign of experimental tests performed for the development of reinforced panels, typically found in aircraft fuselage. The bonded reinforcements can significantly reduce the rate of fatigue crack growth and increase the residual strength of the skin. The reinforcements are of two types: stringers and doublers. The former provides stiffening to the panel while the latter controls the crack growth between the stringers. The purpose of the study is to validate a numerical method of analysis that can predict the damage tolerance of these reinforced panels. Therefore, using a fracture mechanics approach, several models (different by the geometry and the types of reinforcement constraints) were simulated with the finite element solver ABAQUS. The bonding between skin and stiffener was taken either rigid or flexible due to the presence of adhesive. The possible rupture of the reinforcements was also considered. The stress intensity factor trend obtained numerically as a function of crack growth was used to determine the fatigue crack growth rate, obtaining a good approximation of the experimental crack propagation rate in the skin. Therefore, different solutions for improving the damage tolerance of aircraft reinforced panels can be virtually tested in this way before performing experiments

    Damage tolerance analysis of aircraft reinforced panels

    Get PDF
    This work is aimed at reproducing numerically a campaign of experimental tests performed for the development of reinforced panels, typically found in aircraft fuselage. The bonded reinforcements can significantly reduce the rate of fatigue crack growth and increase the residual strength of the skin. The reinforcements are of two types: stringers and doublers. The former provides stiffening to the panel while the latter controls the crack growth between the stringers. The purpose of the study is to validate a numerical method of analysis that can predict the damage tolerance of these reinforced panels. Therefore, using a fracture mechanics approach, several models (different by the geometry and the types of reinforcement constraints) were simulated with the finite element solver ABAQUS. The bonding between skin and stiffener was taken either rigid or flexible due to the presence of adhesive. The possible rupture of the reinforcements was also considered. The stress intensity factor trend obtained numerically as a function of crack growth was used to determine the fatigue crack growth rate, obtaining a good approximation of the experimental crack propagation rate in the skin. Therefore, different solutions for improving the damage tolerance of aircraft reinforced panels can be virtually tested in this way before performing experiments

    Analysis of oscillatory pressure data including dynamic stall effects

    Get PDF
    The dynamic stall phenomenon was examined in detail by analyzing an existing set of unsteady pressure data obtained on an airfoil oscillating in pitch. Most of the data were for sinusoidal oscillations which penetrated the stall region in varying degrees, and here the effort was concentrated on the chordwise propagation of pressure waves associated with the dynamic stall. It was found that this phenomenon could be quantified in terms of a pressure wave velocity which is consistently much less than free-stream velocity, and which varies directly with frequency. It was also found that even when the stall region has been deeply penetrated and a substantial dynamic stall occurs during the downstroke, stall recovery near minimum incidence will occur, followed by a potential flow behavior up to stall inception

    A comparison of the pitching and plunging response of an oscillating airfoil

    Get PDF
    An oscillating SC1095 airfoil model was tested for its aerodynamic stability in a rigid body with a single degree of freedom pitch about its quarter chord, and also in a rigid body with single degree of freedom plunge. The ability of pitching data to model plunging motions was evaluated. A one to one correspondence was established between pairs of pitching and plunging motions according to the potential flow transformation formula alpha=ikh. The imposed variables of the experiment were mean incidence angle, amplitude of motion, free stream velocity, and oscillatory frequency. Results indicate that significant differences exist between the aerodynamic responses to the motions, particularly at high load conditions. At high load conditions, the normal force for equivalent pitch is significantly greater than that for true pitch at the geometric incidence angle

    An experimental investigation of gapwise periodicity and unsteady aerodynamic response in an oscillating cascade. Volume 2: Data report. Part 1: Text and mode 1 data

    Get PDF
    Tests were conducted a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blade along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge. The tests were conducted for all 96 combinations 2 mean camberline incidence angles 2 pitching amplitudes 3 reduced frequencies and 8 interblade phase angles. The pressure data were reduced to Fourier coefficient form for direct comparison, and were also processed to yield integrated loads and particularly, the aerodynamic damping coefficient. Data obtained during the test program, reproduced from the printout of the data reduction program are complied. A further description of the contents of this report is found in the text that follows

    An experimental investigation of gapwise periodicity and unsteady aerodynamic response in an oscillating cascade. Volume 2: Data report. Part 2: Mode 2 data

    Get PDF
    Computer data are provided for tests conducted on a linear cascade of airfoils oscillating in pitch to measure the unsteady pressure response on selected blades along the leading edge plane of the cascade, over the chord of the center blade, and on the sidewall in the plane of the leading edge
    • …
    corecore