19 research outputs found
Recommended from our members
Advanced radiant combustion system. Final report, September 1989--September 1996
Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2
H-alpha emission lines in high-redshift quasars
peer-reviewedInfrared spectra have been obtained of the H-alpha lines in 18 medium- to high-redshift QSOs and optical spectra taken nearly simultaneously to measure the strong UV line. It is found that the H-alpha line is redshifted by an average of 1000 km/s with respect to the lines from high ionization species such as C IV. Low ionization lines from ions like O I and Mg II are shifted by similar, or slightly smaller, amounts with respect to the high ionization lines. These results are difficult to reconcile with any simple models currently available, including those where dust obscuration is solely responsible for the observed velocity shifts. The similarity between the velocities of H-alpha and Mg II, O I provides some support for models in which the Balmer lines are produced predominantly in a warm H I region, while the Lyman lines arise mainly in a population of optically thin clouds. A velocity separation between the two cloud populations, along with some obscuration, could explain the main features
Soil chemical and physical properties from a digestate (winter wheat trial) experiment at North Wyke and Henfaes Farm, UK (2017)
The data consist of soil physicochemical and biological data for three soil depths (0-15, 15-30 and 30-60 cm) from a winter wheat field experiment located at two research sites in the United Kingdom. Soil samples were collected between April 2017 and August 2017. Extractions and measurements were carried out thereafter. The sites were Rothamsted Research at North Wyke in Devon and Bangor University at Henfaes Research Station in North Wales.
At each site measurements were taken from 15 plots, organised within a randomised complete block design where 5 plots did not receive fertilizers (controls), 5 plots received food-based digestate, and 5 plots received acidified food based digestate and the nitrification inhibitor 3,4-dimethylpyrazole (DMPP; ADNI). Soil samples were taken within 2 weeks of digestate application and shortly before winter wheat harvest.
Microbial community composition and nitrogen genes were measured on the same soil samples and are presented in a separate dataset (https://catalogue.ceh.ac.uk/documents/391c0294-07f1-4856-b592-428bd44055ca)
Soil samples were taken by members of staff from Centre of Ecology & Hydrology (Bangor), Bangor University, School of Environment, Natural Resources & Geography Sustainable Agricultural Sciences, and Rothamsted Research North Wyke. Measurements were carried out Rothamsted Research Harpenden and the Centre of Ecology & Hydrology (Wallingford).
Data was collected for the Newton Fund project “UK-China Virtual Joint Centre for Improved Nitrogen Agronomy”. Funded by Biotechnology and Biological Sciences Research Council (BBSRC) and NERC - Ref BB/N013468/