15 research outputs found

    Expression of the 5T4 oncofoetal antigen in renal cell carcinoma: a potential target for T-cell-based immunotherapy

    Get PDF
    The 5T4 oncofoetal antigen is a heavily glycosylated cell surface protein found on human placental trophoblast and on diverse types of human cancer but is not expressed at significant levels on adult human tissues in health. It therefore satisfies the criteria for a tumour-associated antigen and is an ideal target for the immunotherapy of cancer. We report here that 5T4 is strongly expressed on the majority of renal cell carcinomas and therefore this population of patients is suitable for trials of 5T4-targeted therapies. In particular, we have shown that T cells from renal cell carcinoma patients can be genetically modified to kill 5T4 expressing renal cancer cell lines by introduction of a chimeric-signalling protein. This protein consists of a single chain antibody fragment capable of binding antigen directly at the cell surface and then activating the T cell by virtue of a CD3ζ-signalling domain. This is a powerful tool that bypasses a number of mechanisms that allow tumours to escape T-cell killing and can be readily scaled up for clinical use

    CXCR4 Mediated Chemotaxis Is Regulated by 5T4 Oncofetal Glycoprotein in Mouse Embryonic Cells

    Get PDF
    5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES) cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF). Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO) mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which directly facilitates the biological response to CXCL12. The regulation of CXCR4 surface expression by 5T4 molecules is a novel means to control responses to the chemokine CXCL12 for example during embryogenesis but can also be selected to advantage the spread of a 5T4 positive tumor from its primary site

    Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen

    Get PDF
    Superantigens activate T-cells by linking the T-cell receptor to MHC class II on antigen-presenting cells, and novel reactivity can be introduced by fusing the superantigen to a targeting molecule. Thus, an antibody-targeted superantigen, which activates T cells to destroy tumour cells, might be used as cancer therapy. A suitable target is the 5T4 oncofetal antigen, which is expressed on many carcinomas. We constructed a fusion protein from a Fab of a monoclonal antibody recognizing the 5T4 antigen, and an engineered superantigen. The recombinant product 5T4FabV13-SEAD227A bound the 5T4 antigen expressed on the human non-small-cell lung cancer cell line Calu-1 with a Kd of 1.2 nM while the substitution of Asp227 to Ala in the superantigen moiety reduced binding activity to MHC class II. 5T4FabV13-SEAD227A tumour reactivity was demonstrated in 7/7 NSCLC samples by immunohistochemistry, while normal tissue reactivity was low to moderate. 5T4FabV13-SEAD227A induced significant T-cell-dependent in vitro killing of sensitive 5T4 bearing Calu-1 cells, with maximum lysis at 10−10M, while the capacity to lyse MHC class II expressing cells was approximately 1000 times less effective. Immunotherapy of 5T4FabV13-SEAD227A against human NSCLC was investigated in SCID mice reconstituted with human peripheral blood mononuclear cells. Mice carrying intreperitoneally growing Calu-1 cells showed significant reduction in tumour mass and number after intravenous therapy with 5T4FabV13-SEAD227A. Thus, 5T4FabV13-SEAD227A has highly attractive properties for therapy of human NSCLC. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen : implications for immunotherapy

    No full text
    Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells
    corecore