533 research outputs found
Probing Yukawian Gravitational Potential by Numerical Simulations. II. Elliptical Galaxies
Since the Newtonian gravitation is largely used to model with success the
structures of the universe, such as galaxies and clusters of galaxies, for
example, a way to probe and constrain alternative theories, in the weak field
limit, is to apply them to model the structures of the universe. We then
modified the well known Gadget-2 code to probe alternative theories of
gravitation through galactic dynamics. In particular, we modified the Gadget-2
code to probe alternatives theories whose weak field limits have a Yukawa-like
gravitational potential. As a first application of this modified Gadget-2 code
we simulate the evolution of elliptical galaxies. These simulations show that
galactic dynamics can be used to constrain the parameters associated with
alternative theories of gravitation.Comment: 6 pages, 5 figures - To appear in General Relativity and Gravitatio
Pentaquark as Kaon-Nucleon Resonance
Several recent experiments have reported evidence for a narrow feature in the
K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and
with a width < 25 MeV. This state has been labelled as Theta(+) (previously as
Z(*)), and because of the implied inclusion of a anti-strange quark, is
referred to as a pentaquark, that is, five quarks within a single bag. We
present an alternative explanation for such a structure, as a higher angular
momentum resonance in the isospin zero K(+) -N system. One might call this an
exit channel or a molecular resonance. In a non-relativistic potential model we
find a possible candidate for the kaon-nucleon system with relative angular
momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to
confine the kaon and nucleon in a narrow state at an energy so high above
threshold. A rather strong state-dependence in the potential is essential,
however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page
Group Average Representations in Euclidean Distance Cones
The set of Euclidean distance matrices has a well-known representation as a convex cone. The problems of representing the group averages of K distance matrices are discussed, but not fully resolved, in the context of SMACOF, Generalized Orthogonal Procrustes Analysis and Individual Differences Scaling. The polar (or dual) cone representation, corresponding to inner-products around a centroid, is also discussed. Some new characterisations of distance cones in terms of circumhyperspheres are presented
Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models
In the Horndeski's most general scalar-tensor theories with second-order
field equations, we derive the conditions for the avoidance of ghosts and
Laplacian instabilities associated with scalar, tensor, and vector
perturbations in the presence of two perfect fluids on the flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Our general results are
useful for the construction of theoretically consistent models of dark energy.
We apply our formulas to extended Galileon models in which a tracker solution
with an equation of state smaller than -1 is present. We clarify the allowed
parameter space in which the ghosts and Laplacian instabilities are absent and
we numerically confirm that such models are indeed cosmologically viable.Comment: 18 pages, 6 figure
CMB polarization from secondary vector and tensor modes
We consider a novel contribution to the polarization of the Cosmic Microwave
Background induced by vector and tensor modes generated by the non-linear
evolution of primordial scalar perturbations. Our calculation is based on
relativistic second-order perturbation theory and allows to estimate the
effects of these secondary modes on the polarization angular power-spectra. We
show that a non-vanishing B-mode polarization unavoidably arises from pure
scalar initial perturbations, thus limiting our ability to detect the signature
of primordial gravitational waves generated during inflation. This secondary
effect dominates over that of primordial tensors for an inflationary
tensor-to-scalar ratio . The magnitude of the effect is smaller than
the contamination produced by the conversion of polarization of type E into
type B, by weak gravitational lensing. However the lensing signal can be
cleaned, making the secondary modes discussed here the actual background
limiting the detection of small amplitude primordial gravitational waves.Comment: 14 pages, 3 figures, minor changes matching the version to be
published in Phys. Rev.
Investigation of the high momentum component of nuclear wave function using hard quasielastic A(p,2p)X reactions
We present theoretical analysis of the first data on the high energy and
momentum transfer (hard) quasielastic reactions. The cross section
of hard reaction is calculated within the light-cone impulse
approximation based on two-nucleon correlation model for the high-momentum
component of the nuclear wave function. The nuclear effects due to modification
of the bound nucleon structure, soft nucleon-nucleon reinteraction in the
initial and final states of the reaction with and without color coherence have
been considered. The calculations including these nuclear effects show that the
distribution of the bound proton light-cone momentum fraction shifts
towards small values (), effect which was previously derived only
within plane wave impulse approximation. This shift is very sensitive to the
strength of the short range correlations in nuclei. Also calculated is an
excess of the total longitudinal momentum of outgoing protons. The calculations
are compared with data on the reaction obtained from the EVA/AGS
experiment at Brookhaven National Laboratory. These data show -shift in
agreement with the calculations. The comparison allows also to single out the
contribution from short-range nucleon correlations. The obtained strength of
the correlations is in agreement with the values previously obtained from
electroproduction reactions on nuclei.Comment: 30 pages LaTex file and 19 eps figure
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance
A precision measurement of absolute pi+p and pi-p elastic differential cross
sections at incident pion laboratory kinetic energies from T_pi= 141.15 to
267.3 MeV is described. Data were obtained detecting the scattered pion and
recoil proton in coincidence at 12 laboratory pion angles from 55 to 155
degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm
measurements were also obtained for pi+p energies up to 218.1 MeV, with the
scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled,
super-cooled liquid hydrogen target as well as solid CH2 targets were used. The
data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5%
normalization. The reliability of the cross section results was ensured by
carrying out the measurements under a variety of experimental conditions to
identify and quantify the sources of instrumental uncertainty. Our lowest and
highest energy data are consistent with overlapping results from TRIUMF and
LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave
analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA
solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv
requirements. Contact M.M. Pavan for originals). Submitted to Physical Review
Female reproductive life span is extended by targeted removal of fibrotic collagen from the mouse ovary.
The female ovary contains a finite number of oocytes, and their release at ovulation becomes sporadic and dis-ordered with aging and with obesity, leading to loss of fertility. Understanding the molecular defects underpinning this pathology is essential as age of childbearing and obesity rates increase globally. We identify that fibrosis within the ovarian stromal compartment is an underlying mechanism responsible for impaired oocyte release, which is initiated by mitochondrial dysfunction leading to diminished bioenergetics, oxidative damage, inflam-mation, and collagen deposition. Furthermore, antifibrosis drugs (pirfenidone and BGP-15) eliminate fibrotic collagen and restore ovulation in reproductively old and obese mice, in association with dampened M2 macro-phage polarization and up-regulated MMP13 protease. This is the first evidence that ovarian fibrosis is reversible and indicates that drugs targeting mitochondrial metabolism may be a viable therapeutic strategy for women with metabolic disorders or advancing age to maintain ovarian function and extend fertility.Takashi Umehara, Yasmyn E. Winstanley, Eryk Andreas, Atsushi Morimoto, Elisha J. Williams, Kirsten M. Smith, John Carroll, Mark A. Febbraio, Masayuki Shimada, Darryl L. Russell, Rebecca L. Robke
Oxidised cosmic acceleration
We give detailed proofs of several new no-go theorems for constructing flat
four-dimensional accelerating universes from warped dimensional reduction.
These new theorems improve upon previous ones by weakening the energy
conditions, by including time-dependent compactifications, and by treating
accelerated expansion that is not precisely de Sitter. We show that de Sitter
expansion violates the higher-dimensional null energy condition (NEC) if the
compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R
vanishes everywhere, or if R and the warp function satisfy a simple limit
condition. If expansion is not de Sitter, we establish threshold
equation-of-state parameters w below which accelerated expansion must be
transient. Below the threshold w there are bounds on the number of e-foldings
of expansion. If M is one-dimensional or R everywhere vanishing, exceeding the
bound implies the NEC is violated. If R does not vanish everywhere on M,
exceeding the bound implies the strong energy condition (SEC) is violated.
Observationally, the w thresholds indicate that experiments with finite
resolution in w can cleanly discriminate between different models which satisfy
or violate the relevant energy conditions.Comment: v2: corrections, references adde
- …