21,970 research outputs found

    Gauss-Bonnet gravity, brane world models, and non-minimal coupling

    Get PDF
    We study the case of brane world models with an additional Gauss-Bonnet term in the presence of a bulk scalar field which interacts non-minimally with gravity, via a possible interaction term of the form −1/2ξRϕ2-1/2 \xi R \phi^2. The Einstein equations and the junction conditions on the brane are formulated, in the case of the bulk scalar field. Static solutions of this model are obtained by solving numerically the Einstein equations with the appropriate boundary conditions on the brane. Finally, we present graphically and comment these solutions for several values of the free parameters of the model.Comment: 13 pages,4 figures, published versio

    A fast method for Stokes profile synthesis -- Radiative transfer modeling for ZDI and Stokes profile inversion

    Full text link
    The major challenges for a fully polarized radiative transfer driven approach to Zeeman-Doppler imaging are still the enormous computational requirements. In every cycle of the iterative interplay between the forward process (spectral synthesis) and the inverse process (derivative based optimization) the Stokes profile synthesis requires several thousand evaluations of the polarized radiative transfer equation for a given stellar surface model. To cope with these computational demands and to allow for the incorporation of a full Stokes profile synthesis into Doppler- and Zeeman-Doppler imaging applications as well as into large scale solar Stokes profile inversions, we present a novel fast and accurate synthesis method for calculating local Stokes profiles. Our approach is based on artificial neural network models, which we use to approximate the complex non-linear mapping between the most important atmospheric parameters and the corresponding Stokes profiles. A number of specialized artificial neural networks, are used to model the functional relation between the model atmosphere, magnetic field strength, field inclination, and field azimuth, on one hand and the individual components (I,Q,U,V) of the Stokes profiles, on the other hand. We performed an extensive statistical evaluation and show that our new approach yields accurate local as well as disk-integrated Stokes profiles over a wide range of atmospheric conditions. The mean rms errors for the Stokes I and V profiles are well below 0.2% compared to the exact numerical solution. Errors for Stokes Q and U are in the range of 1%. Our approach does not only offer an accurate approximation to the LTE polarized radiative transfer it, moreover, accelerates the synthesis by a factor of more than 1000.Comment: A&A, in pres

    How Decoherence Affects the Probability of Slow-Roll Eternal Inflation

    Get PDF
    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally-sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables---expectation values with respect to the different decohered branches of the wave function---and show that the evolution of modes on individual branches varies from branch to branch. Thus single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.Comment: 27 pages, 3 figures; v2 reflects peer review process and has new results in Section

    De Sitter Space Without Dynamical Quantum Fluctuations

    Get PDF
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincare recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.Comment: version accepted for publication in Foundations of Physic

    Why Boltzmann Brains Don't Fluctuate Into Existence From the De Sitter Vacuum

    Get PDF
    Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a "Boltzmann Brain problem" - the overwhelming majority of observers with fixed local conditions are random fluctuations in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, "observation" refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding to states with observers in them do not annihilate the vacuum does not imply that such observers actually come into existence. The Boltzmann Brain problem is therefore much less generic than has been supposed.Comment: Based on a talk given by SMC at, and to appear in the proceedings of, the Philosophy of Cosmology conference in Tenerife, September 201

    Extremal black holes, gravitational entropy and nonstationary metric fields

    Full text link
    We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and correspond to a single classical microstate. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time tt labels a continuous set of classical microstates, the phase space [ hab(t),Pab(t) ][\,h_{ab}(t), P^{ab}(t)\,], where habh_{ab} is a three-metric induced on a spacelike hypersurface Σt\Sigma_t and PabP^{ab} is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of the classical microstates in the interior since the parameter tt which labels the states lies anywhere between 0 and 2M. We provide numerical evidence from recent simulations of gravitational collapse in isotropic coordinates that the entropy of the Schwarzschild black hole stems from the region inside and near the event horizon where the metric fields are nonstationary; the rest of the spacetime, which is static, makes no contribution. Extremal black holes have an event horizon but in contrast to non-extremal black holes, their extended spacetimes do not possess a bifurcate Killing horizon. This is consistent with the fact that extremal black holes are time-independent and therefore have no distinct time-reverse.Comment: 12 pages, 2 figures. To appear in Class. and Quant. Gravity. Based on an essay selected for honorable mention in the 2010 gravity research foundation essay competitio

    A Naturally Minute Quantum Correction to the Cosmological Constant Descended from the Hierarchy

    Full text link
    We demonstrate that an extremely small but positive quantum correction, or the Casimir energy, to the cosmological constant can arise from a massive bulk fermion field in the Randall-Sundrum model. Specifically, a cosmological constant doubly descended from the Planck-electroweak hierarchy and as minute as the observed dark energy scale can be naturally achieved without fine-tuning of the bulk fermion mass. To ensure the stabilization of the system, we discuss two stabilization mechanisms under this setup. It is found that the Goldberger-Wise mechanism can be successfully introduced in the presence of a massive bulk fermion, without spoiling the smallness of the quantum correction.Comment: 5 page

    Graviton localization and Newton's law for brane models with a non-minimally coupled bulk scalar field

    Full text link
    Brane world models with a non-minimally coupled bulk scalar field have been studied recently. In this paper we consider metric fluctuations around an arbitrary gravity-scalar background solution, and we show that the corresponding spectrum includes a localized zero mode which strongly depends on the profile of the background scalar field. For a special class of solutions, with a warp factor of the RS form, we solve the linearized Einstein equations, for a point-like mass source on the brane, by using the brane bending formalism. We see that general relativity on the brane is recovered only if we impose restrictions on the parameter space of the models under consideration.Comment: 17 pages, revised versio
    • …
    corecore