372 research outputs found

    Dynamical compactification from de Sitter space

    Get PDF
    We show that D-dimensional de Sitter space is unstable to the nucleation of non-singular geometries containing spacetime regions with different numbers of macroscopic dimensions, leading to a dynamical mechanism of compactification. These and other solutions to Einstein gravity with flux and a cosmological constant are constructed by performing a dimensional reduction under the assumption of q-dimensional spherical symmetry in the full D-dimensional geometry. In addition to the familiar black holes, black branes, and compactification solutions we identify a number of new geometries, some of which are completely non-singular. The dynamical compactification mechanism populates lower-dimensional vacua very differently from false vacuum eternal inflation, which occurs entirely within the context of four-dimensions. We outline the phenomenology of the nucleation rates, finding that the dimensionality of the vacuum plays a key role and that among vacua of the same dimensionality, the rate is highest for smaller values of the cosmological constant. We consider the cosmological constant problem and propose a novel model of slow-roll inflation that is triggered by the compactification process.Comment: Revtex. 41 pages with 24 embedded figures. Minor corrections and added reference

    Natural Theories of Ultra-Low Mass PNGB's: Axions and Quintessence

    Full text link
    We consider the Wilson Line PNGB which arises in a U(1)^N gauge theory, abstracted from a latticized, periodically compactified extra dimension U(1). Planck scale breaking of the PNGB's global symmetry is suppressed, providing natural candidates for the axion and quintessence. We construct an explicit model in which the axion may be viewed as the 5th component of the U(1)_Y gauge field in a 1+4 latticized periodically compactified extra dimension. We also construct a quintessence PNGB model where the ultra-low mass arises from Planck-scale suppressed physics itself.Comment: 20 pages, fixed typo and reference

    The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication

    Get PDF
    To increase awareness of the current challenges facing the marine environment, the Future of Our Seas (FOOS) project brought together the expertise of scientists, public engagement experts and creatives to train and support a group of marine scientists in effective science communication and innovative public engagement. This case study aims to inspire scientists and artists to use the FOOS approach in training, activity design and development support (hereafter called the ‘FOOS programme’) to collaboratively deliver novel and creative engagement activities. The authors reflect on the experiences of the marine scientists: (1) attending the FOOS communication and engagement training; (2) creating and delivering public engagement activities; (3) understanding our audience; and (4) collaborating with artists. The authors also share what the artists and audiences learned from participating in the FOOS public engagement activities. These different perspectives provide new insights for the field with respect to designing collaborative training which maximizes the impact of the training on participants, creative collaborators and the public. Long-term benefits of taking part in the FOOS programme, such as initiating future collaborative engagement activities and positively impacting the scientists’ research processes, are also highlighted

    Testing spatial noncommutativiy via the Aharonov-Bohm effect

    Get PDF
    The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We show that, if space is noncommutative, the holonomy receives non-trivial kinematical corrections that will produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formulated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and the bound θ[10TeV]2\theta \sim [ 10 {TeV}]^{-2} is found. If this bound holds, then noncommutative effects could be explored in scattering experiments measuring differential cross sections for small angles. The bound state Aharonov- Bohm effect is also discussed.Comment: 16 pp, Revtex 4, 2 fig, new references added. To appear in PR

    Identification of potential non-invasive biomarkers in diastrophic dysplasia.

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification

    Effects on the CMB from Compactification Before Inflation

    Get PDF
    Many theories beyond the Standard Model include extra dimensions, though these have yet to be directly observed. In this work we consider the possibility of a compactification mechanism which both allows extra dimensions and is compatible with current observations. This compactification is predicted to leave a signature on the CMB by altering the amplitude of the low l multipoles, dependent on the amount of inflation. Recently discovered CMB anomalies at low multipoles may be evidence for this. In our model we assume the spacetime is the product of a four-dimensional spacetime and flat extra dimensions. Before the compactification, both the four-dimensional space- time and the extra dimensions can either be expanding or contracting independently. Taking into account physical constraints, we explore the observational consequences and the plausibility of these different models

    Precision Pion-Proton Elastic Differential Cross Sections at Energies Spanning the Delta Resonance

    Full text link
    A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.Comment: 39 pages, 22 figures (some with quality reduced to satisfy ArXiv requirements. Contact M.M. Pavan for originals). Submitted to Physical Review

    The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions

    Get PDF
    The influence of the nuclear medium upon the internal structure of a composite nucleon is examined. The interaction with the medium is assumed to depend on the relative distances between the quarks in the nucleon consistent with the notion of color neutrality, and to be proportional to the nucleon density. In the resulting description the nucleon in matter is a superposition of the ground state (free nucleon) and radial excitations. The effects of the nuclear medium on the electromagnetic and weak nucleon form factors, and the nucleon structure function are computed using a light-front constituent quark model. Further experimental consequences are examined by considering the electromagnetic nuclear response functions. The effects of color neutrality supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to [email protected]

    Realistic Equations of State for the Primeval Universe

    Full text link
    Early universe equations of state including realistic interactions between constituents are built up. Under certain reasonable assumptions, these equations are able to generate an inflationary regime prior to the nucleosynthesis period. The resulting accelerated expansion is intense enough to solve the flatness and horizon problems. In the cases of curvature parameter \kappa equal to 0 or +1, the model is able to avoid the initial singularity and offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ
    corecore