1,522 research outputs found

    Evaluating Outer Segment Length as A Surrogate Measure of Peak Foveal Cone Density

    Get PDF
    Adaptive optics (AO) imaging tools enable direct visualization of the cone photoreceptor mosaic, which facilitates quantitative measurements such as cone density. However, in many individuals, low image quality or excessive eye movements precludes making such measures. As foveal cone specialization is associated with both increased density and outer segment (OS) elongation, we sought to examine whether OS length could be used as a surrogate measure of foveal cone density. The retinas of 43 subjects (23 normal and 20 albinism; aged 6–67 years) were examined. Peak foveal cone density was measured using confocal adaptive optics scanning light ophthalmoscopy (AOSLO), and OS length was measured using optical coherence tomography (OCT) and longitudinal reflectivity profile-based approach. Peak cone density ranged from 29,200 to 214,000 cones/mm2(111,700 ± 46,300 cones/mm2); OS length ranged from 26.3 to 54.5 μm (40.5 ± 7.7 μm). Density was significantly correlated with OS length in albinism (p \u3c 0.0001), but not normals (p = 0.99). A cubic model of density as a function of OS length was created based on histology and optimized to fit the albinism data. The model includes triangular cone packing, a cylindrical OS with a fixed volume of 136.6 μm3, and a ratio of OS to inner segment width that increased linearly with increasing OS length (R2 = 0.72). Normal subjects showed no apparent relationship between cone density and OS length. In the absence of adequate AOSLO imagery, OS length may be used to estimate cone density in patients with albinism. Whether this relationship exists in other patient populations with foveal hypoplasia (e.g., premature birth, aniridia, isolated foveal hypoplasia) remains to be seen

    Repeatability of \u3cem\u3eIn Vivo\u3c/em\u3e Parafoveal Cone Density and Spacing Measurements

    Get PDF
    Purpose. To assess the repeatability and measurement error associated with cone density and nearest neighbor distance (NND) estimates in images of the parafoveal cone mosaic obtained with an adaptive optics scanning light ophthalmoscope (AOSLO).Methods. Twenty-one participants with no known ocular pathology were recruited. Four retinal locations, approximately 0.65[degrees] eccentricity from the center of fixation, were imaged 10 times in randomized order with an AOSLO. Cone coordinates in each image were identified using an automated algorithm (with or without manual correction) from which cone density and NND were calculated. Owing to naturally occurring fixational instability, the 10 images recorded from a given location did not overlap entirely. We thus analyzed each image set both before and after alignment.Results. Automated estimates of cone density on the unaligned image sets showed a coefficient of repeatability of 11,769 cones/mm2 (17.1%). The primary reason for this variability appears to be fixational instability, as aligning the 10 images to include the exact same retinal area results in an improved repeatability of 4358 cones/mm2 (6.4%) using completely automated cone identification software. Repeatability improved further by manually identifying cones missed by the automated algorithm, with a coefficient of repeatability of 1967 cones/mm2 (2.7%). NND showed improved repeatability and was generally insensitive to the undersampling by the automated algorithm.Conclusions. As our data were collected in a young, healthy population, this likely represents a best-case estimate for corresponding measurements in patients with retinal disease. Similar studies need to be carried out on other imaging systems (including those using different imaging modalities, wavefront correction technology, and/or image analysis software), as repeatability would be expected to be highly sensitive to initial image quality and the performance of cone identification algorithms. Separate studies addressing intersession repeatability and interobserver reliability are also needed

    A Tale of Two Narrow-Line Regions: Ionization, Kinematics, and Spectral Energy Distributions for a Local Pair of Merging Obscured Active Galaxies

    Get PDF
    We explore the gas ionization and kinematics, as well as the optical--IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z≈0.04z \approx 0.04). Due to the wide separation between these interacting galaxies (∼23\sim 23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow line emission in both galaxies is photoionized by an AGN and confirm the existence of a 10-kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1--2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from {\em XMM-Newton}. These galaxies represent a useful pair to explore how the [\ion{O}{3}] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN "flickering" over short timescales, we speculate that the appearances and impact of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as "dual AGNs."Comment: 15 pages, 10 figures, accepted by the Astrophysical Journa

    The Potential use of Seagrass Herbivory Patterns as an Indicator of Herbivore Community Change after Tropical Marine Protected Area Establishment

    Get PDF
    Throughout the Caribbean, fishing pressure has decreased the abundance of many species, including both large predators and larger-bodied herbivores. In an effort to reverse these trends and reduce harvest pressure on vulnerable fish populations, Marine Protected Areas (MPAs) have been established throughout the Caribbean. Yet, the effort to monitor fish communities, is variable, and there are MPAs where no monitoring program exists. It is possible that other metrics may be used to determine whether the impact of MPA establishment. By comparing two seagrass herbivory experiments, one pre- and one post-MPA establishment, we provide evidence that the MPA established in Discovery Bay, Jamaica in 2009, may have altered the herbivore community. Seagrass grazing has decreased while the size of bites almost doubled after the MPA was established. This dramatic shift in herbivory rates and bite size might be useful indicators that the MPA in Discovery Bay is working, despite limited monitoring of fish populations

    Are Eastern Oysters Being Bored to Death? Influence of \u3cem\u3eCliona celata\u3c/em\u3e on \u3cem\u3eCrassostrea virginica\u3c/em\u3e Condition, Growth and Survival

    Get PDF
    The boring sponge Cliona celata is a nuisance species that can have deleterious effects on eastern oyster Crassostrea virginica growth, condition, and survival. Surprisingly, however, these effects have not been well documented and when examined, results have been equi-vocal. In this study, we provide a direct comparison of growth, condition, and survival of sponge-colonized and uncolonized oysters in southeast North Carolina in 2 separate experiments. In the first experiment, sponge-colonized oysters exhibited significantly slower growth rates, reduced condition, and lower survival relative to uncolonized oysters, although results may have been confounded by oyster source. In the second experiment, using smaller oysters from the same source population, growth rate was again significantly reduced in colonized oysters relative to uncolonized oysters, however neither condition nor survival differed. In field surveys of the same population, colonized individuals across a range of sizes demonstrated significantly reduced condition. Further, condition index was negatively correlated with sponge biomass, which was positively correlated with oyster size, suggesting that the impact of the sponge changes with ontogeny. By investigating clearance rates, tissue isotopic and nutrient content, as well as caloric value, this study provides further evidence that sponge presence causes the oysters to divert energy into costly shell maintenance and repair at the expense of shell and somatic growth. Thus, although variable, our results demonstrate negative impacts of sponge infestation on oyster demographics, particularly as oysters grow larger

    CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Get PDF
    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shock's interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa
    • …
    corecore