25 research outputs found

    Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Get PDF
    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm

    Fiber-enriched double-setting calcium phosphate bone cement

    No full text
    Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. (C) 2003 Wiley Periodicals, Inc.65A224425

    alpha-tricalcium phosphate cement: 'in vitro' cytotoxicity

    No full text
    Calcium phosphate-based bioceramics have revolutionized orthopedic and dental repair of damaged parts of the bone system. Among these materials, calcium phosphate-based cements, with hydraulic setting, stand out due to their biocompatibility and in situ hardening, which allow easy manipulation and adaptation to the shape and dimensions of bone defects. An investigation was made of the in vitro cytotoxic effect of calcium phosphate cement based on a-tricalcium phosphate, immersed for different lengths of time in simulated body fluid (SBF), based on the ISO-10993 'Biological Evaluation of Medical Devices' standard. The culture medium was Chinese hamster ovary (CHO) cells in contact with diluted cement extracts. The results revealed that the calcium phosphate cement used was cytotoxic and that the material's cytotoxicity decreased the longer the cement was immersed in SBF. (C) 2002 Elsevier Science Ltd. All rights reserved.2392035204
    corecore