16 research outputs found

    Association of immune responses of Zebu and Holstein-Friesian cattle and resistance to mycobacteria in a BCG challenge model

    Get PDF
    Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein‐Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naĂŻve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naĂŻve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non‐vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non‐vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen‐specific IFNÎł secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments

    Intercalated Cell BKα Subunit is Required for Flow-Induced K+ Secretion

    No full text
    BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice

    L-WNK1 is Required for BK Channel Activation in Intercalated Cells

    No full text
    Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet
    corecore