1,764 research outputs found
G\"odel-type Spacetimes in Induced Matter Gravity Theory
A five-dimensional (5D) generalized G\"odel-type manifolds are examined in
the light of the equivalence problem techniques, as formulated by Cartan. The
necessary and sufficient conditions for local homogeneity of these 5D manifolds
are derived. The local equivalence of these homogeneous Riemannian manifolds is
studied. It is found that they are characterized by three essential parameters
, and : identical triads correspond to
locally equivalent 5D manifolds. An irreducible set of isometrically
nonequivalent 5D locally homogeneous Riemannian generalized G\"odel-type
metrics are exhibited. A classification of these manifolds based on the
essential parameters is presented, and the Killing vector fields as well as the
corresponding Lie algebra of each class are determined. It is shown that the
generalized G\"odel-type 5D manifolds admit maximal group of isometry
with , or depending on the essential parameters ,
and . The breakdown of causality in all these classes of homogeneous
G\"odel-type manifolds are also examined. It is found that in three out of the
six irreducible classes the causality can be violated. The unique generalized
G\"odel-type solution of the induced matter (IM) field equations is found. The
question as to whether the induced matter version of general relativity is an
effective therapy for these type of causal anomalies of general relativity is
also discussed in connection with a recent article by Romero, Tavakol and
Zalaletdinov.Comment: 19 pages, Latex, no figures. To Appear in J.Math.Phys.(1999
Big brother is watching - using digital disease surveillance tools for near real-time forecasting
Abstract for the International Journal of Infectious Diseases 79 (S1) (2019).https://www.ijidonline.com/article/S1201-9712(18)34659-9/abstractPublished versio
A Safe and Efficient Method to Retrieve Mesenchymal Stem Cells from Three-Dimensional Fibrin Gels
Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140244/1/ten.tec.2013.0051.pd
Glueball Regge trajectories from gauge/string duality and the Pomeron
The spectrum of light baryons and mesons has been reproduced recently by
Brodsky and Teramond from a holographic dual to QCD inspired in the AdS/CFT
correspondence. They associate fluctuations about the AdS geometry with four
dimensional angular momenta of the dual QCD states. We use a similar approach
to estimate masses of glueball states with different spins and their
excitations. We consider Dirichlet and Neumann boundary conditions and find
approximate linear Regge trajectories for these glueballs. In particular the
Neumann case is consistent with the Pomeron trajectory.Comment: In this revised version we made some additional remarks on the text.
We also included 2 more references. The glueball spectrum and Regge
trajectories are unchanged. 10 pages, 2 eps figure
Satellite laser ranging work at the Goddard Space Flight Center
Laser ranging systems, their range and accuracy capabilities, and planned improvements for future systems are discussed, the systems include one fixed and two mobile lasers ranging systems. They have demonstrated better than 10 cm accuracy both on a carefully surveyed ground range and in regular satellite ranging operations. They are capable of ranging to all currently launched retroreflector equipped satellites with the exception of Timation III. A third mobile system is discussed which will be accurate to better than 5 cm and will be capable of ranging to distant satellites such as Timation III and LAGEOS
A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks
In many cases, tainted information in a computer network can spread in a way
similar to an epidemics in the human world. On the other had, information
processing paths are often redundant, so a single infection occurrence can be
easily "reabsorbed". Randomly checking the information with a central server is
equivalent to lowering the infection probability but with a certain cost (for
instance processing time), so it is important to quickly evaluate the epidemic
threshold for each node. We present a method for getting such information
without resorting to repeated simulations. As for human epidemics, the local
information about the infection level (risk perception) can be an important
factor, and we show that our method can be applied to this case, too. Finally,
when the process to be monitored is more complex and includes "disruptive
interference", one has to use actual simulations, which however can be carried
out "in parallel" for many possible infection probabilities
Contributions of early cortical processing and reading ability to functional status in individuals at clinical high risk for psychosis
Background: There is a growing recognition that individuals at clinical high risk need intervention for functional impairments, along with emerging psychosis, as the majority of clinical high risk (CHR) individuals show persistent deficits in social and role functioning regardless of transition to psychosis. Recent studies have demonstrated reduced reading ability as a potential cause of functional disability in schizophrenia, related to underlying deficits in generation of mismatch negativity (MMN). The present study extends these findings to subjects at CHR. Methods: The sample consisted of 34 CHR individuals and 33 healthy comparison subjects (CNTLs) from the Recognition and Prevention (RAP) Program at the Zucker Hillside Hospital in New York. At baseline, reading measures were collected, along with MMN to pitch, duration, and intensity deviants, and measures of neurocognition, and social and role (academic/work) functioning. Results: CHR subjects showed impairments in reading ability, neurocognition, and MMN generation, relative to CNTLs. Lower-amplitude MMN responses were correlated with worse reading ability, slower processing speed, and poorer social and role functioning. However, when entered into a simultaneous regression, only reduced responses to deviance in sound duration and volume predicted poor social and role functioning, respectively. Conclusions: Deficits in reading ability exist even prior to illness onset in schizophrenia and may represent a decline in performance from prior abilities. As in schizophrenia, deficits are related to impaired MMN generation, suggesting specific contributions of sensory-level impairment to neurocognitive processes related to social and role function. (C) 2015 Elsevier B.V. All rights reserved
Supersymmetric Rotating Black Holes and Causality Violation
The geodesics of the rotating extreme black hole in five spacetime dimensions
found by Breckenridge, Myers, Peet and Vafa are Liouville integrable and may be
integrated by additively separating the Hamilton-Jacobi equation. This allows
us to obtain the St\"ackel-Killing tensor. We use these facts to give the
maximal analytic extension of the spacetime and discuss some aspects of its
causal structure. In particular, we exhibit a `repulson'-like behaviour
occuring when there are naked closed timelike curves. In this case we find that
the spacetime is geodesically complete (with respect to causal geodesics) and
free of singularities. When a partial Cauchy surface exists, we show, by
solving the Klein-Gordon equation, that the absorption cross-section for
massless waves at small frequencies is given by the area of the hole. At high
frequencies a dependence on the angular quantum numbers of the wave develops.
We comment on some aspects of `inertial time travel' and argue that such time
machines cannot be constructed by spinning up a black hole with no naked closed
timelike curves.Comment: 36 pages,LaTeX,8 figures;added 1 reference and a few comments;
formula (2.6) corrected; a few changes to section
On Supergroups with Odd Clifford Parameters and Supersymmetry with Modified Leibniz Rule
We investigate supergroups with Grassmann parameters replaced by odd Clifford
parameters. The connection with non-anticommutative supersymmetry is discussed.
A Berezin-like calculus for odd Clifford variables is introduced. Fermionic
covariant derivatives for supergroups with odd Clifford variables are derived.
Applications to supersymmetric quantum mechanics are made. Deformations of the
original supersymmetric theories are encountered when the fermionic covariant
derivatives do not obey the graded Leibniz property. The simplest non-trivial
example is given by the N=2 SQM with a real multiplet and a cubic
potential. The action is real. Depending on the overall sign ("Euclidean" or
"Lorentzian") of the deformation, a Bender-Boettcher pseudo-hermitian
hamiltonian is encountered when solving the equation of motion of the auxiliary
field. A possible connection of our framework with the Drinfeld twist
deformation of supersymmetry is pointed out.Comment: Final version to be published in Int. J. Mod. Phys. A; 20 page
Stem Cells Derived from Tooth Periodontal Ligament Enhance Functional Angiogenesis by Endothelial Cells
In regenerative medicine approaches involving cell therapy, selection of the appropriate cell type is important in that the cells must directly (differentiation) or indirectly (trophic effects) participate in the regenerative response. Regardless of the mode of action of the cells, angiogenesis underlies the success of these approaches. Stem cells derived from tooth tissues, specifically the periodontal ligament of teeth (periodontal ligament stem cells [PDLSCs]), have recently been identified as a good source of multipotent cells for cell therapies. PDLSCs have demonstrated properties similar to mesenchymal stem cells (MSCs), yet, unlike MSCs, their vascular potential has not been previously demonstrated. Thus, the aim of this study was to determine if PDLSCs could modulate angiogenesis. In comparison to MSCs and stem cells derived from tooth pulp tissues (SHEDs), we first determined if PDLSCs released soluble proangiogenic factors with the capacity to induce vessel formation by endothelial cells (ECs). Next, the ability of PDLSCs to modulate angiogenesis was examined through their cotransplantation with ECs in subcutaneous sites of immunocompromised mice. Finally, the stability of the PDLSC-mediated vasculature was determined through evaluation of the maturity and functionality of the vessels formed following PDLSC transplantation. It was determined that PDLSCs produced appreciable levels of vascular endothelial growth factor and basic fibroblast growth factor-2, and additionally, were able to initiate in vitro angiogenesis of ECs comparable to MSC- and SHED-mediated angiogenesis. In vivo cotransplantation of ECs with PDLSCs significantly (>50% increase) enhanced the number of blood vessels formed relative to transplantation of ECs alone. Finally, vessels formed following PDLSC cotransplantation were more mature and less permeable than those formed after transplantation of EC alone. These data demonstrate for the first time that PDLSCs have vascular potential, which could make them a very attractive cell population for utilization in regenerative cell therapies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140229/1/ten.tea.2013.0512.pd
- âŠ