12,122 research outputs found

    Observations on the Overwintering Potential of the Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Southern Minnesota

    Get PDF
    The striped cucumber beetle, Acalymma vittatum (Fabricius) (Coleoptera: Chrysomelidae), is an important pest of cucurbit crops. However, the overwinter- ing capacity of this pest in temperate regions is poorly understood. In this study, the in-field survival of A. vittatum was examined during three consecutive winters. In addition, the supercooling points of A. vittatum were determined as an index of cold hardiness for adults. During each winter, the survival of adults decreased significantly through time, with no individuals surviving until spring. By comparing the supercooling points and in-field survival of adults to soil temperatures, it appears that winter temperatures in Minnesota are cold enough to induce freezing of the beetles. Moreover, a considerable amount of mortality occurred before minimum monthly soil temperatures dropped below the supercooling point of overwintering individuals, suggesting the occurrence of prefreeze mortality. An improved understanding of the response of A. vittatum to winter temperatures in temperate regions may aid in early season management of this pest

    Rotating Hele-Shaw cells with ferrofluids

    Full text link
    We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the problem shows that a non-uniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field, which tends to decrease the number of interface ripples. We contrast these results with the situation in which a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.Comment: 12 pages, 3 ps figures, RevTe

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d≥2d\geq 2 and in all of space for d≥3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    Physical Conditions in the Narrow-Line Region of M51

    Full text link
    We have investigated the physical conditions in the narrow-line region (NLR) of M51 using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) and 3.6 cm radio continuum observations obtained with the Very Large Array (VLA). Emission-line diagnostics were employed for nine NLR clouds, which extend 2.5" (102 pc) from the nucleus, to examine the electron density, temperature, and ionization state of the NLR gas. The emission-line ratios are consistent with those typically found in Seyfert nuclei and indicate that within the inner near-nuclear region (r ~< 1") the ionization decreases with increasing radius. Upper-limits to the [O III] electron temperature (T ~< 11,000 K) for the inner NLR clouds indicate that photoionization is the dominant ionization mechanism close to the nucleus. The emission-line fluxes for most of the NLR clouds can be reproduced reasonably well by simple photoionization models using a central power-law continuum source and supersolar nitrogen abundances. Shock+precursor models, however, provide a better fit to the observed fluxes of an NLR cloud ~2.5" south of the nucleus that is identified with the extra-nuclear cloud (XNC). The large [O III] electron temperature of this cloud (T = 24,000 K) further suggests the presence of shocks. This cloud is straddled by two radio knots and lies near the location where a weak radio jet, ~2.5" (102pc) in extent, connects the near-nuclear radio emission with a diffuse lobe structure spanning \~4" (163 pc). It is plausible that this cloud represents the location where the radio jet impinges on the disk ISM.Comment: 25 pages, 26 figures (9 color), 7 tables. Accepted for publication in the Astrophysical Journa

    Observations on the Overwintering Potential of the Striped Cucumber Beetle (Coleoptera: Chrysomelidae) in Southern Minnesota

    Get PDF
    The striped cucumber beetle, Acalymma vittatum (Fabricius) (Coleoptera: Chrysomelidae), is an important pest of cucurbit crops. However, the overwinter- ing capacity of this pest in temperate regions is poorly understood. In this study, the in-field survival of A. vittatum was examined during three consecutive winters. In addition, the supercooling points of A. vittatum were determined as an index of cold hardiness for adults. During each winter, the survival of adults decreased significantly through time, with no individuals surviving until spring. By comparing the supercooling points and in-field survival of adults to soil temperatures, it appears that winter temperatures in Minnesota are cold enough to induce freezing of the beetles. Moreover, a considerable amount of mortality occurred before minimum monthly soil temperatures dropped below the supercooling point of overwintering individuals, suggesting the occurrence of prefreeze mortality. An improved understanding of the response of A. vittatum to winter temperatures in temperate regions may aid in early season management of this pest

    A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes

    Get PDF
    A Lagrangian numerical scheme for solving nonlinear degenerate Fokker{Planck equations in space dimensions d>2 is presented. It applies to a large class of nonlinear diffusion equations, whose dynamics are driven by internal energies and given external potentials, e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our approach is the gradient ow structure of the dynamics. For discretization of the Lagrangian map, we use a finite subspace of linear maps in space and a variational form of the implicit Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits energy estimates from the original gradient ow, and these lead to weak compactness of the trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A variety of numerical experiments for the porous medium equation indicates that the scheme is well-adapted to track the growth of the solution's support
    • …
    corecore