2,516 research outputs found

    Mean-field limit for the stochastic Vicsek model

    Get PDF
    We consider the continuous version of the Vicsek model with noise, proposed as a model for collective behavior of individuals with a fixed speed. We rigorously derive the kinetic mean-field partial differential equation satisfied when the number N of particles tends to infinity, quantifying the convergence of the law of one particle to the solution of the PDE. For this we adapt a classical coupling argument to the present case in which both the particle system and the PDE are defined on a surface rather than on the whole space. As part of the study we give existence and uniqueness results for both the particle system and the PDE

    Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction

    Get PDF
    We analyse a reduced 1D Vlasov--Maxwell system introduced recently in the physical literature for studying laser-plasma interaction. This system can be seen as a standard Vlasov equation in which the field is split in two terms: an electrostatic field obtained from Poisson's equation and a vector potential term satisfying a nonlinear wave equation. Both nonlinearities in the Poisson and wave equations are due to the coupling with the Vlasov equation through the charge density. We show global existence of weak solutions in the non-relativistic case, and global existence of characteristic solutions in the quasi-relativistic case. Moreover, these solutions are uniquely characterised as fixed points of a certain operator. We also find a global energy functional for the system allowing us to obtain LpL^p-nonlinear stability of some particular equilibria in the periodic setting

    Explicit Equilibrium Solutions For the Aggregation Equation with Power-Law Potentials

    Get PDF
    Despite their wide presence in various models in the study of collective behaviors, explicit swarming patterns are difficult to obtain. In this paper, special stationary solutions of the aggregation equation with power-law kernels are constructed by inverting Fredholm integral operators or by employing certain integral identities. These solutions are expected to be the global energy stable equilibria and to characterize the generic behaviors of stationary solutions for more general interactions

    A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

    Full text link
    We propose a positivity preserving entropy decreasing finite volume scheme for nonlinear nonlocal equations with a gradient flow structure. These properties allow for accurate computations of stationary states and long-time asymptotics demonstrated by suitably chosen test cases in which these features of the scheme are essential. The proposed scheme is able to cope with non-smooth stationary states, different time scales including metastability, as well as concentrations and self-similar behavior induced by singular nonlocal kernels. We use the scheme to explore properties of these equations beyond their present theoretical knowledge

    Convergence to Equilibrium in Wasserstein distance for damped Euler equations with interaction forces

    Get PDF
    We develop tools to construct Lyapunov functionals on the space of probability measures in order to investigate the convergence to global equilibrium of a damped Euler system under the influence of external and interaction potential forces with respect to the 2-Wasserstein distance. We also discuss the overdamped limit to a nonlocal equation used in the modelling of granular media with respect to the 2-Wasserstein distance, and provide rigorous proofs for particular examples in one spatial dimension
    • …
    corecore