13 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Topography of age-related changes in sleep spindles

    No full text
    Aging induces multiple changes to sleep spindles, which may hinder their alleged functional role in memory and sleep protection mechanisms. Brain aging in specific cortical regions could affect the neural networks underlying spindle generation, yet the topography of these age-related changes is currently unknown. In the present study, we analyzed spindle characteristics in 114 healthy volunteers aged between 20 and 73 years over 5 anteroposterior electroencephalography scalp derivations. Spindle density, amplitude, and duration were higher in young subjects than in middle-aged and elderly subjects in all derivations, but the topography of age effects differed drastically. Age-related decline in density and amplitude was more prominent in anterior derivations, whereas duration showed a posterior prominence. Age groups did not differ in all-night spindle frequency for any derivation. These results show that age-related changes in sleep spindles follow distinct topographical patterns that are specific to each spindle characteristic. This topographical specificity may provide a useful biomarker to localize age-sensitive changes in underlying neural systems during normal and pathological aging. (C) 2013 Elsevier Inc. All rights reserved

    TCDD exposure-response analysis and risk assessment

    No full text
    We examined the relation between cancer mortality and time-dependent cumulative exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) estimated from a concentration- and age-dependent kinetic model of elimination, and we estimated incremental cancer risks at age 75. Data from the National Institute for Occupational Safety and Health study of 3,538 workers with occupational exposure to TCDD were analyzed using standardized mortality ratios and Cox regression procedures. Analyses adjusted for potential confounding by age, year of birth, and race and considered exposure lag periods of 0, 10, or 15 years. Other potential confounders including smoking and other occupational exposures were evaluated indirectly. To explore the influence of extreme values of cumulative TCDD ppt-years, we restricted the analysis to observations with exposure below the 95th percentile or used logarithmic (ln) transformed exposure values. We applied penalized smoothing splines to examine variation in the exposure-response relation across the exposure range. TCDD was not statistically significantly associated with cancer mortality using the full data set, regardless of the lag period. When we restricted the analysis to observations with exposure below the 95th percentile, TCDD was associated positively with cancer mortality, particularly when a 15-year lag was applied (untransformed exposure data: regression coefficient (β̂) = 3.3 × 10 , standard error(s.e.) = 1.4 × 10, p < 0.05; ln-transformed exposure data: β̂ = 8.1 × 10, s.e. = 2.9 × 10, p < 0.05). The estimated incremental lifetime risk of mortality at age 75 from all cancerswas about 6 to more than 10 times lower than previous estimates derived from this cohortusing exposure models that did not consider the age and concentration dependence of TCDD elimination

    A Novel Toxicokinetic Modeling of Cypermethrin and Permethrin and Their Metabolites in Humans for Dose Reconstruction from Biomarker Data

    No full text
    To assess exposure to pyrethroids in the general population, one of most widely used method nowadays consists of measuring urinary metabolites. Unfortunately, interpretation of data is limited by the unspecified relation between dose and levels in biological tissues and excreta. The objective of this study was to develop a common multi-compartment toxicokinetic model to predict the time courses of two mainly used pyrethroid pesticides, permethrin and cypermethrin, and their metabolites (cis-DCCA, trans-DCCA and 3-PBA) in the human body and in accessible biological matrices following different exposure scenarios. Toxicokinetics was described mathematically by systems of differential equations to yield the time courses of these pyrethroids and their metabolites in the different compartments. Unknown transfer rate values between compartments were determined from best fits to available human data on the urinary excretion time courses of metabolites following an oral and dermal exposure to cypermethrin in volunteers. Since values for these coefficients have not yet been determined, a mathematical routine was programmed in MathCad to establish the possible range of values on the basis of physiological and mathematical considerations. The best combination of parameter values was then selected using a statistic measure (reliability factor) along with a statistically acceptable range of values for each parameter. With this approach, simulations provided a close approximation to published time course data. This model allows to predict urinary time courses of trans-DCCA, cis-DCCA and 3-PBA, whatever the exposure route. It can also serve to reconstruct absorbed doses of permethrin or cypermethrin in the population using measured biomarker data

    Exposure reconstruction for the TCDD-exposed NIOSH cohort using a concentration- and age-dependent model of elimination

    No full text
    Recent studies demonstrating a concentration dependence of elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suggest that previous estimates of exposure for occupationally exposed cohorts may have underestimated actual exposure, resulting in a potential overestimate of the carcinogenic potency of TCDD in humans based on the mortality data for these cohorts. Using a database on U.S. chemical manufacturing workers potentially exposed to TCDD compiled by the National Institute for Occupational Safety and Health (NIOSH), we evaluated the impact of using a concentration- and age-dependent elimination model (CADM) (Aylward et al., 2005) on estimates of serum lipid area under the curve (AUC) for the NIOSH cohort. These data were used previously by Steenland et al. (2001) in combination with a first-order elimination model with an 8.7-year half-life to estimate cumulative serum lipid concentration (equivalent to AUC) for these workers for use in cancer dose-response assessment. Serum lipid TCDD measurements taken in 1988 for a subset of the cohort were combined with the NIOSH job exposure matrix and work histories to estimate dose rates per unit of exposure score. We evaluated the effect of choices in regression model (regression on untransformed vs. In-transformed data and inclusion of a nonzero regression intercept) as well as the impact of choices of elimination models and parameters on estimated AUCs for the cohort. Central estimates for dose rate parameters derived from the serum-sampled subcohort were applied with the elimination models to time-specific exposure scores for the entire cohort to generate AUC estimates for all cohort members. Use of the CADM resulted in improved model fits to the serum sampling data compared to the first-order models. Dose rates varied by a factor of 50 among different combinations of elimination model, parameter sets, and regression models. Use of a CADM results in increases of up to five-fold in AUC estimates for the more highly exposed members of the cohort compared to estimates obtained using the first-order model with 8.7-year half-life. This degree of variation in the AUC estimates for this cohort would affect substantially the cancer potency estimates derived from the mortality data from this cohort. Such variability and uncertainty in the reconstructed serum lipid AUC estimates for this cohort, depending on elimination model, parameter set, and regression model, have not been described previously and are critical components in evaluating the dose-response data from the occupationally exposed populations
    corecore