4 research outputs found

    In vitro identification of new transcriptomic and miRNomic profiles associated with pulmonary fibrosis induced by high doses everolimus: Looking for new pathogenetic markers and therapeutic targets

    Get PDF
    The administration of Everolimus (EVE), a mTOR inhibitor used in transplantation and cancer, is often associated with adverse effects including pulmonary fibrosis. Although the underlying mechanism is not fully clarified, this condition could be in part caused by epithelial to mesenchymal transition (EMT) of airway cells. To improve our knowledge, primary bronchial epithelial cells (BE63/3) were treated with EVE (5 and 100 nM) for 24 h. EMT markers (α-SMA, vimentin, fibronectin) were measured by RT-PCR. Transepithelial resistance was measured by Millicell-ERS ohmmeter. mRNA and microRNA profiling were performed by Illumina and Agilent kit, respectively. Only high dose EVE increased EMT markers and reduced the transepithelial resistance of BE63/3. Bioinformatics showed 125 de-regulated genes that, according to enrichment analysis, were implicated in collagen synthesis/metabolism. Connective tissue growth factor (CTGF) was one of the higher up-regulated mRNA. Five nM EVE was ineffective on the pro-fibrotic machinery. Additionally, 3 miRNAs resulted hyper-expressed after 100 nM EVE and able to regulate 31 of the genes selected by the transcriptomic analysis (including CTGF). RT-PCR and western blot for MMP12 and CTGF validated high-throughput results. Our results revealed a complex biological network implicated in EVE-related pulmonary fibrosis and underlined new potential disease biomarkers and therapeutic targets

    An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls

    Get PDF
    Sarcoidosis is a systemic granulomatous disease of unknown cause that affects the lungs in over 90% of cases. Breath analysis by electronic nose technology provides exhaled molecular profiles that have potential in the diagnosis of several respiratory diseases. We hypothesized that exhaled molecular profiling may distinguish well-characterized patients with sarcoidosis from controls. To that end we performed electronic nose measurements in untreated and treated sarcoidosis patients and in healthy controls. 31 sarcoidosis patients (11 patients with untreated pulmonary sarcoidosis [age: 48.4 ± 9.0], 20 patients with treated pulmonary sarcoidosis [age: 49.7 ± 7.9]) and 25 healthy controls (age: 39.6 ± 14.1) participated in a cross-sectional study. Exhaled breath was collected twice using a Tedlar bag by a standardized method. Both bags were then sampled by an electronic nose (Cyranose C320), resulting in duplicate data. Statistical analysis on sensor responses was performed off-line by principal components (PC) analyses, discriminant analysis and ROC curves. Breathprints from patients with untreated pulmonary sarcoidosis were discriminated from healthy controls (CVA: 83.3%; AUC 0.825). Repeated measurements confirmed those results. Patients with untreated and treated sarcoidosis could be less well discriminated (CVA 74.2%), whereas the treated sarcoidosis group was undistinguishable from controls (CVA 66.7%) Untreated patients with active sarcoidosis can be discriminated from healthy controls. This suggests that exhaled breath analysis has potential for diagnosis and/or monitoring of sarcoidosi

    An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls

    No full text
    Background: Malignant Pleural Mesothelioma (MPM) is a tumour of the surface cells of the pleura that is highly aggressive and mainly caused by asbestos exposure. Electronic noses capture the spectrum of exhaled volatile organic compounds (VOCs) providing a composite biomarker profile (breathprint). Objective: We tested the hypothesis that an electronic nose can discriminate exhaled air of patients with,MPM from subjects with a similar long-term professional exposure to asbestos without MPM and from healthy controls. Methods: 13 patients with a histology confirmed diagnosis of MPM (age 60.9 +/- 12.2 year), 13 subjects with certified, long-term professional asbestos exposure (age 67.2 +/- 9.8), and 13 healthy subjects without asbestos exposure (age 52.2 +/- 16.2) participated in a cross-sectional study. Exhaled breath was collected by a previously described method and sampled by an electronic nose (Cyranose 320). Breathprints were analyzed by canonical discriminant analysis on principal component reduction. Cross-validated accuracy (CVA) was calculated. Results: Breathprints from patients with MPM were separated from subjects with asbestos exposure (CVA: 80.8%, sensitivity 92.3%, specificity 85.7%). MPM was also distinguished from healthy controls (CVA: 84.6%). Repeated measurements confirmed these results. Conclusions: Molecular pattern recognition of exhaled breath can correctly distinguish patients with MPM from subjects with similar occupational asbestos exposure without MPM and from healthy controls. This suggests that breathprints obtained by electronic nose have diagnostic potential for MPM. (C) 2011 Elsevier Ireland Ltd. All rights reserve
    corecore