10,512 research outputs found

    An overview of tea research in Tanzania - with special reference to the Southern Highlands.

    Get PDF
    The history of tea development in Tanzania from the early part of this century to the present is summarised. Average yields of made tea from well managed estates in the Mufindi district have increased from around 600 kg ha-1 in the late 1950s to 3000 kg ha-1 at the present time: by comparison, yields from smallholder farms have remained much lower, averaging only 400-500 kg ha-1. There have been a large number of technical, economic and other changes over the last 30 to 40 years. The removal of shade trees, the use of herbicides, the application of NPK compound fertilisers, the introduction of irrigation (on some estates) and changes in harvesting policy have all contributed to the increases in yield. Financial and infrastructural problems have contributed to the low yields from many smallholders and others, and have limited the uptake of new technology. The contribution of research is reviewed, from the start of the Tea Research Institute of East Africa in Kenya in 1951, through to the development of the Marikitanda Tea Research Centre in Amani in 1967; the Ngwazi Tea Research Unit in Mufindi (1967 to 1970, and from 1986), and lastly the Kifyulilo Tea Research Station, also in Mufindi in 1986. The yield potential of well fertilized and irrigated clonal tea, grown at an altitude of 1800 m, is around 6000 kg ha-1. This potential is reduced by drought, lack of fertilizer, bush vacancies and inefficient harvesting practices. The corresponding potential yields at high (2200 m) and low (1200 m) altitude sites range from 3000-3500 kg ha-1 up to 9000-10000 kg ha-1 and are largely a function of temperature. The opportunities for increasing yields of existing tea, smallholder and estate, are enormous. Tea production in the Southern Highlands of Tanzania is about to expand rapidly. Good, appropriate research is needed to sustain this development over the long term, and suggestions on how best this is done in order to assist the large scale producers as well as the smallholders, are discussed

    The water relations and irrigation requirements of lychee (litchi chinensis sonn.): a review

    Get PDF
    The results of research into the water relations and irrigation requirements of lychee are collated and reviewed. The stages of plant development are summarised, with an emphasis on factors influencing the flowering process. This is followed by reviews of plant water relations, water requirements, water productivity and, finally, irrigation systems. The lychee tree is native to the rainforests of southern China and northern Vietnam, and the main centres of production remain close to this area. In contrast, much of the research on the water relations of this crop has been conducted in South Africa, Australia and Israel where the tree is relatively new. Vegetative growth occurs in a series of flushes. Terminal inflorescences are borne on current shoot growth under cool (<15 °C), dry conditions. Trees generally do not produce fruit in the tropics at altitudes below 300 m. Poor and erratic flowering results in low and irregular fruit yields. Drought can enhance flowering in locations with dry winters. Roots can extract water from depths greater than 2 m. Diurnal trends in stomatal conductance closely match those of leaf water status. Both variables mirror changes in the saturation deficit of the air. Very little research on crop water requirements has been reported. Crop responses to irrigation are complex. In areas with low rainfall after harvest, a moderate water deficit before floral initiation can increase flowering and yield. In contrast, fruit set and yield can be reduced by a severe water deficit after flowering, and the risk of fruit splitting increased. Water productivity has not been quantified. Supplementary irrigation in South-east Asia is limited by topography and competition for water from the summer rice crop, but irrigation is practised in Israel, South Africa, Australia and some other places. Research is needed to determine the benefits of irrigation in different growing areas. Copyright © Cambridge University Press 2013

    Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity

    Full text link
    A stability criterion is derived in general relativity for self-similar solutions with a scalar field and those with a stiff fluid, which is a perfect fluid with the equation of state P=ρP=\rho. A wide class of self-similar solutions turn out to be unstable against kink mode perturbation. According to the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be a critical solution for the spherical collapse of a stiff fluid if we allow sufficiently small discontinuity in the density gradient field in the initial data sets. The self-similar scalar-field solution, which was recently found numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19} 6359), is also unstable. Both the flat Friedmann universe with a scalar field and that with a stiff fluid suffer from kink instability at the particle horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity, typos correcte

    A comparison of the responses of mature and young clonal tea to drought.

    Get PDF
    To assist commercial producers with optimising the use of irrigation water, the responses to drought of mature and young tea crops (22 and 5 years after field planting respectively) were compared using data from two adjacent long-term irrigation experiments in Southern Tanzania. Providing the maximum potential soil water deficit was below about 400-500 mm for mature, and 200-250 mm for young plants (clone 6/8), annual yields of dry tea from rainfed or partially irrigated crops were similar to those from the corresponding well-watered crops. At deficits greater than this, annual yields declined rapidly in young tea (up to 22 kg (ha mm)-1) but relatively slowly in mature tea (up to 6.5 kg (ha mm)- 1). This apparent insensitivity of the mature crop to drought was due principally to compensation that occurred during the rains for yield lost in the dry season. Differences in dry matter distribution and shoot to root ratios contributed to these contrasting responses. Thus, the total above ground dry mass of well-irrigated, mature plants was about twice that for young plants. Similarly, the total mass of structural roots (>1 mm diameter), to 3 m depth, was four times greater in the mature crop than in the young crop and, for fine roots (<1 mm diameter), eight times greater. The corresponding shoot to root ratios (dry mass) were about 1:1 and 2:1 respectively. In addition, each unit area of leaf in the canopy of a mature plant had six times more fine roots (by weight) available to extract and supply water than did a young plant. Despite the logistical benefits resulting from more even crop distribution during the year when crops are fully irrigated, producers currently prefer to save water and energy costs by allowing a substantial soil water deficit to develop prior to the start of the rains, up to 250 mm in mature tea, knowing that yield compensation will occur later

    Alpha/beta and gamma interferons are induced by infection with noncytopathic bovine viral diarrhea virus in vivo

    Get PDF
    In contrast to the results of previous in vitro studies, experimental infection of calves with noncytopathic bovine viral diarrhea virus (ncpBVDV) was found to induce strong alpha/beta and gamma interferon responses in gnotobiotic animals. These responses were associated with depressed levels of transforming growth factor β (TGF-β) in serum. The results of this study indicate that the immunosuppression caused by ncpBVDV is not associated with low interferon responses or elevated levels of TGF-β

    Stationary Kolmogorov Solutions of the Smoluchowski Aggregation Equation with a Source Term

    Get PDF
    In this paper we show how the method of Zakharov transformations may be used to analyze the stationary solutions of the Smoluchowski aggregation equation for arbitrary homogeneous kernel. The resulting massdistributions are of Kolmogorov type in the sense that they carry a constant flux of mass from small masses to large. We derive a ``locality criterion'', expressed in terms of the asymptotic properties of the kernel, that must be satisfied in order for the Kolmogorov spectrum to be an admissiblesolution. Whether a given kernel leads to a gelation transition or not can be determined by computing the mass capacity of the Kolmogorov spectrum. As an example, we compute the exact stationary state for the family of kernels,Kζ(m1,m2)=(m1m2)ζ/2K_\zeta(m_1,m_2)=(m_1m_2)^{\zeta/2} which includes both gelling and non-gelling cases, reproducing the known solution in the case ζ=0\zeta=0. Surprisingly, the Kolmogorov constant is the same for all kernels in this family.Comment: This article is an expanded version of a talk given at IHP workshop "Dynamics, Growth and Singularities of Continuous Media", Paris July 2003. Updated 01/04/04. Revised version with additional discussion, references added, several typographical errors corrected. Revised version accepted for publication by Phys. Rev.

    Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth

    Full text link
    The fundamental question of how Bose-Einstein condensates tunnel into a barrier is addressed. The cubic nonlinear Schrodinger equation with a finite square well potential, which models a Bose-Einstein condensate in a quasi-one-dimensional trap of finite depth, is solved for the complete set of localized and partially localized stationary states, which the former evolve into when the nonlinearity is increased. An immediate application of these different solution types is tunable tunneling. Magnetically tunable Feshbach resonances can change the scattering length of certain Bose-condensed atoms, such as 85^{85}Rb, by several orders of magnitude, including the sign, and thereby also change the mean field nonlinearity term of the equation and the tunneling of the wavefunction. We find both linear-type localized solutions and uniquely nonlinear partially localized solutions where the tails of the wavefunction become nonzero at infinity when the nonlinearity increases. The tunneling of the wavefunction into the non-classical regime and thus its localization therefore becomes an external experimentally controllable parameter.Comment: 11 pages, 5 figure

    Metastable Quantum Phase Transitions in a Periodic One-dimensional Bose Gas: Mean-Field and Bogoliubov Analyses

    Full text link
    We generalize the concept of quantum phase transitions, which is conventionally defined for a ground state and usually applied in the thermodynamic limit, to one for \emph{metastable states} in \emph{finite size systems}. In particular, we treat the one-dimensional Bose gas on a ring in the presence of both interactions and rotation. To support our study, we bring to bear mean-field theory, i.e., the nonlinear Schr\"odinger equation, and linear perturbation or Bogoliubov-de Gennes theory. Both methods give a consistent result in the weakly interacting regime: there exist \emph{two topologically distinct quantum phases}. The first is the typical picture of superfluidity in a Bose-Einstein condensate on a ring: average angular momentum is quantized and the superflow is uniform. The second is new: one or more dark solitons appear as stationary states, breaking the symmetry, the average angular momentum becomes a continuous quantity, and the phase of the condensate can be continuously wound and unwound

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent γ\gamma will be given by γ0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte

    Hartree-Fock-Bogoliubov Model and Simulation of Attractive and Repulsive Bose-Einstein Condensates

    Get PDF
    We describe a model of dynamic Bose-Einstein condensates near a Feshbach resonance that is computationally feasible under assumptions of spherical or cylindrical symmetry. Simulations in spherical symmetry approximate the experimentally measured time to collapse of an unstably attractive condensate only when the molecular binding energy in the model is correct, demonstrating that the quantum fluctuations and atom-molecule pairing included in the model are the dominant mechanisms during collapse. Simulations of condensates with repulsive interactions find some quantitative disagreement, suggesting that pairing and quantum fluctuations are not the only significant factors for condensate loss or burst formation. Inclusion of three-body recombination was found to be inconsequential in all of our simulations, though we do not consider recent experiments [1] conducted at higher densities
    corecore