1,086 research outputs found

    Fibre optic intravascular measurements of blood flow: A review

    Get PDF
    Fibre optic sensors are well suited to measuring fluid flow in many contexts, and recently there has been burgeoning interest in their application to direct, invasive measurement of blood flow within human vasculature. Depending on the sensing method used and assumptions made, these intravascular measurements of blood flow can provide information about local blood velocity, volumetric flow, and flow-derived parameters. Fibre optic sensors can be readily integrated into medical devices, which are positioned into arteries and veins to obtain measurements that are inaccessible or cumbersome using non-invasive imaging modalities. Measurements of flow within coronary arteries is a particularly promising application of fibre optic sensing; recent studies have demonstrated the clinical utility of certain flow-based parameters, such as the coronary flow reserve (CFR) and the index of microcirculatory resistance (IMR). In this review, research and development of fibre optic flow sensors relevant to intravascular flow measurements are reviewed, with a particular focus on biomedical clinical translation

    Optical interferometric temperature sensors for intravascular blood flow measurements

    Get PDF
    Direct and continuous measurements of blood flow are of significant interest in many medical specialties. In cardiology, intravascular physiological measurements can be of critical importance to determine whether coronary stenting should be performed. Intravascular pressure is a physiological parameter that is frequently measured in clinical practice. An increasing body of evidence suggests that direct measurements of blood flow, as additional physiological parameters, could improve decision making. In this study, we developed a novel fibre optic intravascular flow sensor, which enabled time-of-flight measurements by upstream thermal tagging of blood. This flow sensor comprised a temperature sensitive polymer dome at the distal end of a single mode optical fibre. The dome was continuously interrogated by low coherence interferometry to measure thermally-induced length changes with nanometre-scale resolution. Flow measurements were performed by delivering heat upstream from the sensor with a separate optical fibre, and monitoring the temperature downstream at the dome with a sample rate of 50 Hz. A fabricated flow sensor was characterized and tested within a benchtop phantom, which comprised vessels with lumen diameters that ranged from 2.5 to 5 mm. Water was used as a blood mimicking fluid. For each vessel diameter, a pump provided constant volumetric flow at rates in the range of 5 to 200 ml/min. This range was chosen to represent flow rates encountered in healthy human vessels. Laser light pulses with a wavelength of 1470 nm and durations of 0.4 s were used to perform upstream thermal tagging. These pulses resulted in downstream temperature profiles that varied with the volumetric flow rate

    Structure and Transport in Coatings from Multiscale Computed Tomography of Coatings-New Perspectives for Eelectrochemical Impedance Spectroscopy Modeling?

    Get PDF
    Computed Tomography (CT) is an approach that has been extensively applied in many areas of science from understanding structures in living organisms to materials science. In materials science, the study of structures within coatings presents challenges on at least two different levels. First, the structure of the coatings needs to be understood from the atomic scale, where dissolution reactions begin, up to length scales which cover the aggregation of inhibitors and other additives, which take place at ∼10−5 m, i.e. 4 to 5 orders of magnitude. CT is a favourable imaging technique since it allows multiscale information to be obtained non-destructively down to tens of nanometres. In this study X-ray absorption contrast imaging has been used to examine structures created using strontium chromate (SrCrO4) particles embedded in an epoxy film. It has been found that SrCrO4 particles can form clusters that extend a few hundred microns in the plane of the film, span the thickness of the film and have fractal characteristics. There are also volumes of low density epoxy of similar sizes and characteristics to the SrCrO4 clusters. The SrCrO4 clusters have a strong influence on the leaching behaviour since the release changes with time. Initially, leaching is controlled by direct dissolution but, as the clusters dissolve, the release is dominated by the fractal dimension of the cluster. The dissolved clusters leave behind voids filled with electrolyte that provide alternative transport pathways for corrosive ions through the polymer. In this paper, the nature of these clusters will be reviewed and the implication for transport properties and electrochemical assessment will be explored

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Formation and Propagation of Matter Wave Soliton Trains

    Full text link
    Attraction between atoms in a Bose-Einstein-Condensate renders the condensate unstable to collapse. Confinement in an atom trap, however, can stabilize the condensate for a limited number of atoms, as was observed with 7Li, but beyond this number, the condensate collapses. Attractive condensates constrained to one-dimensional motion are predicted to form stable solitons for which the attractive interactions exactly compensate for the wave packet dispersion. Here we report the formation or bright solitons of 7Li atoms created in a quasi-1D optical trap. The solitons are created from a stable Bose-Einstein condensate by magnetically tuning the interactions from repulsive to attractive. We observe a soliton train, containing many solitons. The solitons are set in motion by offsetting the optical potential and are observed to propagate in the potential for many oscillatory cycles without spreading. Repulsive interactions between neighboring solitons are inferred from their motion

    Targeting TLR4 during vaccination boosts MAdCAM-1+ lymphoid stromal cell activation and promotes the aged germinal center response

    Get PDF
    The failure to generate enduring humoral immunity after vaccination is a hallmark of advancing age. This can be attributed to a reduction in the germinal center (GC) response, which generates long-lived antibody-secreting cells that protect against (re)infection. Despite intensive investigation, the primary cellular defect underlying impaired GCs in aging has not been identified. Here, we used heterochronic parabiosis to demonstrate that GC formation was dictated by the age of the lymph node (LN) microenvironment rather than the age of the immune cells. Lymphoid stromal cells are a key determinant of the LN microenvironment and are also an essential component underpinning GC structure and function. Using mouse models, we demonstrated that mucosal adressin cell adhesion molecule-1 (MAdCAM-1)-expressing lymphoid stromal cells were among the first cells to respond to NP-KLH + Alum immunization, proliferating and up-regulating cell surface proteins such as podoplanin and cell adhesion molecules. This response was essentially abrogated in aged mice. By targeting TLR4 using adjuvants, we improved the MAdCAM-1+ stromal cell response to immunization. This correlated with improved GC responses in both younger adult and aged mice, suggesting a link between stromal cell responses to immunization and GC initiation. Using bone marrow chimeras, we also found that MAdCAM-1+ stromal cells could respond directly to TLR4 ligands. Thus, the age-associated defect in GC and stromal cell responses to immunization can be targeted to improve vaccines in older people

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy

    Induction of aphid resistance in tobacco by the cucumber mosaic virus CMV∆2b mutant is jasmonate-dependent.

    Get PDF
    Cucumber mosaic virus (CMV) is vectored by aphids, including Myzus persicae. Tobacco (Nicotiana tabacum 'Xanthi') plants infected with a mutant of the Fny strain of CMV (Fny-CMVΔ2b, which cannot express the CMV 2b protein) exhibit strong resistance against M. persicae, which is manifested by decreased survival and reproduction of aphids confined on the plants. Previously, we found that the Fny-CMV 1a replication protein elicits aphid resistance in plants infected with Fny-CMVΔ2b, whereas in plants infected with wild-type Fny-CMV this is counteracted by the CMV 2b protein, a counterdefence protein that, among other things, inhibits jasmonic acid (JA)-dependent immune signalling. We noted that in nontransformed cv. Petit Havana SR1 tobacco plants aphid resistance was not induced by Fny-CMVΔ2b, suggesting that not all tobacco varieties possess the factor(s) with which the 1a protein interacts. To determine if 1a protein-induced aphid resistance is JA-dependent in Xanthi tobacco, transgenic plants were made that expressed an RNA silencing construct to diminish expression of the JA co-receptor CORONATINE-INSENSITIVE 1. Fny-CMVΔ2b did not induce resistance to M. persicae in these transgenic plants. Thus, aphid resistance induction by the 1a protein requires JA-dependent defensive signalling, which is countered by the CMV 2b protein

    Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates

    Full text link
    Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wavepackets, which share some exceptional generic features like form-stability and particle-like properties. Ultra-cold quantum gases represent very pure and well-controlled non-linear systems, therefore offering unique possibilities to study soliton dynamics. Here we report on the first observation of long-lived dark and dark-bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87^{87}Rb Bose-Einstein condensates. In particular, our detailed studies of dark and dark-bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure

    Boosting Long-term Memory via Wakeful Rest: Intentional Rehearsal is not Necessary, Automatic Consolidation is Sufficient.

    Get PDF
    <div><p>People perform better on tests of delayed free recall if learning is followed immediately by a short wakeful rest than by a short period of sensory stimulation. Animal and human work suggests that wakeful resting provides optimal conditions for the consolidation of recently acquired memories. However, an alternative account cannot be ruled out, namely that wakeful resting provides optimal conditions for intentional rehearsal of recently acquired memories, thus driving superior memory. Here we utilised non-recallable words to examine whether wakeful rest boosts long-term memory, even when new memories could not be rehearsed intentionally during the wakeful rest delay. The probing of non-recallable words requires a recognition paradigm. Therefore, we first established, via Experiment 1, that the rest-induced boost in memory observed via free recall can be replicated in a recognition paradigm, using concrete nouns. In Experiment 2, participants heard 30 non-recallable non-words, presented as ‘foreign names in a bridge club abroad’ and then either rested wakefully or played a visual spot-the-difference game for 10 minutes. Retention was probed via recognition at two time points, 15 minutes and 7 days after presentation. As in Experiment 1, wakeful rest boosted recognition significantly, and this boost was maintained for at least 7 days. Our results indicate that the enhancement of memory via wakeful rest is <i>not</i> dependent upon intentional rehearsal of learned material during the rest period. We thus conclude that consolidation is <i>sufficient</i> for this rest-induced memory boost to emerge. We propose that wakeful resting allows for superior memory consolidation, resulting in stronger and/or more veridical representations of experienced events which can be detected via tests of free recall and recognition.</p></div
    corecore