93 research outputs found

    Infrared study of spin-Peierls compound alpha'-NaV2O5

    Full text link
    Infrared reflectance of alpha'-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in the range of 1D magnetic excitation energies was found. The strong near-IR absorption band at 0.8 eV shows a strong anisotropy with vanishing intensity in c-polarisation. Activation of new phonons due to the lattice dimerisation were detected below 35K as well as pretransitional structural fluctuations up to 65K.Comment: 3 pages, 2 figures, 1 table. Contributed paper for the SCES'98 (15-18 July 1998, Paris). To be published in Physica

    Raman, infrared and optical spectra of the spin-Peierls compound NaV_2O_5

    Full text link
    We have measured polarized spectra of Raman scattering, infrared and optical transmission of NaV_2O_5 single crystals above the temperature of the spin-Peierls transition Tsp=35 K. Some of the far-infrared (FIR) phonon lines are strongly asymmetric, due to the spin-phonon interaction. In addition to the phonon lines, a broad band was observed in the c(aa)c Raman spectrum and in the E||a FIR transmission spectrum. A possible origin of these bands is discussed. The absorption band at 10000 cm-1 1.25 eV is attributed to vanadium d-d electronic transitions while the absorption edge above 3 eV is supposed to correspond to the onset of charge-transfer transitions.Comment: 7 figures, 8 page

    Anomalous thermal conductivity of NaV2O5 as compared to conventional spin-Peierls system CuGeO3

    Get PDF
    A huge increase of thermal conductivity k is observed at the phase transition in stoichiometric NaV2O5. This anomaly decreases and gradually disappears with deviation from stoichiometry in Na(1-x}V2O5 (x = 0.01, 0.02, 0.03, and 0.04). This behavior is compared with that of pure and Zn-doped CuGeO3 where only modest kinks in the k(T) curves are observed at the spin-Peierls transition. The change of k at critical temperature Tc could be partially attributed to the opening of an energy gap in the magnetic excitation spectrum excluding the scattering of thermal phonons on spin fluctuations. However, the reason for such a strong anomaly in the k(T) may lie not only in the different energy scales of CuGeO3 and NaV2O5, but also in the different character of the phase transition in NaV2O5 which can have largely a structural origin, e.g. connected with the charge ordering.Comment: PostScript 4 pages, 4 PostScript pictures. Submitted to Physical Review Letter

    Coexistence of charge density wave and spin-Peierls orders in quarter-filled quasi-one dimensional correlated electron systems

    Full text link
    Charge and spin-Peierls instabilities in quarter-filled (n=1/2) compounds consisting of coupled ladders and/or zig-zag chains are investigated. Hubbard and t-J models including local Holstein and/or Peierls couplings to the lattice are studied by numerical techniques. Next nearest neighbor hopping and magnetic exchange, and short-range Coulomb interactions are also considered. We show that, generically, these systems undergo instabilities towards the formation of Charge Density Waves, Bond Order Waves and (generalized) spin-Peierls modulated structures. Moderate electron-electron and electron-lattice couplings can lead to a coexistence of these three types of orders. In the ladder, a zig-zag pattern is stabilized by the Holstein coupling and the nearest-neighbor Coulomb repulsion. In the case of an isolated chain, bond-centered and site-centered 2k_F and 4k_F modulations are induced by the local Holstein coupling. In addition, we show that, in contrast to the ladders, a small charge ordering in the chains, strongly enhances the spin-Peierls instability. Our results are applied to the NaV_2O_5 compound (trellis lattice) and various phases with coexisting charge disproportionation and spin-Peierls order are proposed and discussed in the context of recent experiments. The role of the long-range Coulomb potential is also outlined.Comment: 10 pages, Revtex, 10 encapsulated figure

    High frequency ESR investigation on dynamical charge disproportionation and spin gap excitation in NaV_2O_5

    Full text link
    A significant frequency dependence of the ESR line width is found in NaV_2O_5 between 34-100 K and the line width increases as the resonance frequency is increased from 95 GHz to 760 GHz. The observed frequency dependence is qualitatively explained in terms of the dynamical charge disproportionation. The present results show the essential role of the internal charge degree of freedom in a V-O-V bond. We have also proposed the existence of the Dzyaloshinsky-Moriya interaction in the low temperature charge ordered phase considering the breaking of the selection rule of ESR realized as the direct observation of the spin gap excitation.Comment: 9 figures submitted to J. Phys.Soc. Jp

    High frequency dielectric and magnetic anomaly at the phase transition in NaV2O5

    Get PDF
    We found anomalies in the temperature dependence of the dielectric and the magnetic susceptibiliy of NaV_2O_5 in the microwave and far infrared frequency ranges. The anomalies occur at the phase transition temperature T_c, at which the spin gap opens. The real parts of the dielectric constants epsilon_a and epsilon_c decrease below T_c. The decrease of epsilon_a (except for the narrow region close to T_c) is proportional to the intensity of the x-ray reflection appearing at T_c. The dielectric constant anomaly can be explained by the zigzag charge ordering in the ab-plane appearing below T_c. The anomaly of the microwave magnetic losses is probably related to the coupling between the spin and charge degrees of freedom in vanadium ladders.Comment: 3 PS-figures, LATEX-text, new experimental data added, typos correcte

    Ab initio evaluation of the charge-ordering in α′NaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We report {\it ab initio} calculations of the charge ordering in α′NaV2O5\alpha^\prime NaV_2O_5 using large configurations interaction methods on embedded fragments. Our major result is that the 2py2p_y electrons of the bridging oxygen of the rungs present a very strong magnetic character and should thus be explicitly considered in any relevant effective model. The most striking consequence of this result is that the spin and charge ordering differ substantially, as differ the experimental results depending on whether they are sensitive to the spin or charge density.Comment: 4 page

    Interference of a first-order transition with the formation of a spin-Peierls state in alpha'-NaV2O5?

    Full text link
    We present results of high-resolution thermal-expansion and specific-heat measurements on single crystalline alpha'-NaV2O5. We find clear evidence for two almost degenerate phase transitions associated with the formation of the dimerized state around 33K: A sharp first-order transition at T1=(33+-0.1)K slightly below the onset of a second-order transition at T2onset around (34+-0.1)K. The latter is accompanied by pronounced spontaneous strains. Our results are consistent with a structural transformation at T1 induced by the incipient spin-Peierls (SP) order parameter above T2=TSP.Comment: 5 pages, 7 figure

    Dynamical properties of the spin-Peierls compound \alpha'--NaV2O5

    Full text link
    Dynamical properties of the novel inorganic spin-Peierls compound \alpha'--NaV2O5 are investigated using a one-dimensional dimerized Heisenberg model. By exact diagonalizations of chains with up to 28 sites, supplemented by a finite-size scaling analysis, the dimerization parameter \delta is determined by requiring that the model reproduces the experimentally observed spin gap \Delta. The dynamical and static spin structure factors are calculated. As for CuGeO3, the existence of a low energy magnon branch separated from the continuum is predicted. The present calculations also suggest that a large magnetic Raman scattering intensity should appear above an energy threshold of 1.9 \Delta. The predicted photoemission spectrum is qualitatively similar to results for an undimerized chain due to the presence of sizable short-range antiferromagnetic correlations.Comment: 4 pages, latex, minor misprints corrected and a few references adde

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    • …
    corecore