18,181 research outputs found

    Segmentation ART: A Neural Network for Word Recognition from Continuous Speech

    Full text link
    The Segmentation ATIT (Adaptive Resonance Theory) network for word recognition from a continuous speech stream is introduced. An input sequeuce represents phonemes detected at a preproccesing stage. Segmentation ATIT is trained rapidly, and uses a fast-learning fuzzy ART modules, top-down expectation, and a spatial representation of temporal order. The network performs on-line identification of word boundaries, correcting an initial hypothesis if subsequent phonemes are incompatible with a previous partition. Simulations show that the system's segmentation perfonnance is comparable to that of TRACE, and the ability to segment a number of difficult phrases is also demonstrated.National Science Foundation (NSF-IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0G57

    Patient's breath controls comfort devices

    Get PDF
    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch

    Dynamical Structure of the Molecular Interstellar Medium in an Extremely Bright, Multiply Lensed z ≃ 3 Submillimeter Galaxy Discovered with Herschel

    Get PDF
    We report the detection of CO(J = 5 → 4), CO(J = 3 → 2), and CO(J = 1 → 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 ± 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of ~9" and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'_(CO(1-0)) = (4.17 ± 0.41), L'_(CO(3-2)) = (3.96 ± 0.20), and L'_(CO(5-4)) = (3.45 ± 0.20) × 10^(10) (μL/10.9)^(–1) K km s^(–1) pc^2, corresponding to luminosity ratios of r_(31) = 0.95 ± 0.10, r_(53) = 0.87 ± 0.06, and r_(51) = 0.83 ± 0.09. This suggests a total molecular gas mass of M_(gas) = 3.3×10^(10) (α_(CO)/0.8) (μ_L/10.9)^(–1) M_☉. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, "wet" (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing

    Technology utilization in a non-urban region - A measurement of the impact of the Technology Use Studies Center Final report

    Get PDF
    Technology utilization in agricultural areas and measurement of impact of technology use studies cente

    Interferometric Evidence for Resolved Warm Dust in the DQ Tau System

    Get PDF
    We report on near-infrared (IR) interferometric observations of the double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess; modeling our data requires inclusion of near-IR light from an 'excess' source. Remarkably the excess source is resolved in our data, similar in scale to the binary itself (∼\sim 0.2 AU at apastron), rather than the larger circumbinary disk (∼\sim 0.4 AU radius). Our observations support the \citet{Mathieu1997} and \citet{Carr2001} inference of significant warm material near the DQ Tau binary.Comment: 14 pgs, 3 figures, ApJL in pres

    The AdHOC study of older adults’ adherence to medication in 11 countries

    Get PDF
    BACKGROUND: Compared with the resources expended developing, evaluating and making clinical decisions about prescribing medication, we know little about what determines whether people take it. Older adults are prescribed more medication than any other group. Poor adherence is a common reason for nonresponse to medication. OBJECTIVES: To investigate cross-nationally the impact of demographic, psychiatric (including cognitive), physical health, behavioural and medication factors on adherence to medication in older adults. METHODS: Researchers interviewed 3881 people over 65 who receive home care services using a structured interview at participants’ places of residence in eleven countries. The main outcome measure was the percentage participants not adherent to medication. RESULTS: 12.5% (n= 456) of people reported they were not fully adherent to medication. Non-adherence was predicted by problem drinking (OR=3.6), not having a doctor review medication (OR=3.3), dementia (OR=1.4 for every one point increase in impairment), good physical health (OR=1.2), resisting care (OR=2.1) being married (OR=2.3) and living in the Czech Republic (OR=4.7) or Germany (OR=1.4). CONCLUSION: People, who screen positive for problem drinking and with dementia, often undiagnosed are less likely to adhere to medication. Therefore doctors should consider dementia and problem drinking when prescribing for older adults. Interventions to improve adherence in older adults might be more effective if 4 targeted at these groups. It is possible that medication review enhances adherence, by improving the patient-doctor relationship, or by emphasising the relevance of medications

    Recognition of 3-D Objects from Multiple 2-D Views by a Self-Organizing Neural Architecture

    Full text link
    The recognition of 3-D objects from sequences of their 2-D views is modeled by a neural architecture, called VIEWNET that uses View Information Encoded With NETworks. VIEWNET illustrates how several types of noise and varialbility in image data can be progressively removed while incornplcte image features are restored and invariant features are discovered using an appropriately designed cascade of processing stages. VIEWNET first processes 2-D views of 3-D objects using the CORT-X 2 filter, which discounts the illuminant, regularizes and completes figural boundaries, and removes noise from the images. Boundary regularization and cornpletion are achieved by the same mechanisms that suppress image noise. A log-polar transform is taken with respect to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation invariance. The invariant images are coarse coded to further reduce noise, reduce foreshortening effects, and increase generalization. These compressed codes are input into a supervised learning system based on the fuzzy ARTMAP algorithm. Recognition categories of 2-D views are learned before evidence from sequences of 2-D view categories is accumulated to improve object recognition. Recognition is studied with noisy and clean images using slow and fast learning. VIEWNET is demonstrated on an MIT Lincoln Laboratory database of 2-D views of jet aircraft with and without additive noise. A recognition rate of 90% is achieved with one 2-D view category and of 98.5% correct with three 2-D view categories.National Science Foundation (IRI 90-24877); Office of Naval Research (N00014-91-J-1309, N00014-91-J-4100, N00014-92-J-0499); Air Force Office of Scientific Research (F9620-92-J-0499, 90-0083

    Ysovar: The First Sensitive, Wide-area, Mid-infrared Photometric Monitoring of the Orion Nebula Cluster

    Get PDF
    We present initial results from time-series imaging at infrared wavelengths of 0.9 deg^2 in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 μm data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen-burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (I_c) and/or near-infrared (JK_s ) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 and 4.5 μm variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009 and highlight our light curves for AA-Tau analogs—YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs

    Massive Protoplanetary Disks in the Trapezium Region

    Full text link
    (abridged) We determine the disk mass distribution around 336 stars in the young Orion Nebula cluster by imaging a 2.5' x 2.5' region in 3 mm continuum emission with the Owens Valley Millimeter Array. For this sample of 336 stars, we observe 3 mm emission above the 3-sigma noise level toward ten sources, six of which have also been detected optically in silhouette against the bright nebular background. In addition, we detect 20 objects that do not correspond to known near-IR cluster members. Comparisons of our measured fluxes with longer wavelength observations enable rough separation of dust emission from thermal free-free emission, and we find substantial dust emission toward most objects. For the ten objects detected at both 3 mm and near-IR wavelengths, eight exhibit substantial dust emission. Excluding the high-mass stars and assuming a gas-to-dust ratio of 100, we estimate circumstellar masses ranging from 0.13 to 0.39 Msun. For the cluster members not detected at 3 mm, images of individual objects are stacked to constrain the mean 3 mm flux of the ensemble. The average flux is detected at the 3-sigma confidence level, and implies an average disk mass of 0.005 Msun, comparable to the minimum mass solar nebula. The percentage of stars in Orion surrounded by disks more massive than ~0.1 Msun is consistent with the disk mass distribution in Taurus, and we argue that massive disks in Orion do not appear to be truncated through close encounters with high-mass stars. Comparison of the average disk mass and number of massive dusty structures in Orion with similar surveys of the NGC 2024 and IC 348 clusters constrains the evolutionary timescales of massive circumstellar disks in clustered environments.Comment: 27 pages, including 7 figures. Accepted by Ap
    • …
    corecore