22,399 research outputs found
CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk
We present CARMA 1.3 mm continuum data of the disk surrounding the young
brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular
resolution of the CARMA observations (0.16 arcsec) allows us to spatially
resolve for the first time the thermal emission from dust around a brown dwarf.
We analyze the interferometric visibilities and constrain the disk outer radius
adopting disk models with power-law radial profiles of the dust surface
density. In the case of a power-law index equal to or lower than 1, we obtain a
disk radius in the range of about 15 - 30 AU, while larger disks are inferred
for steeper radial profiles. By combining this information on the disk spatial
extent with the sub-mm spectral index of this source we find conclusive
evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss
the implications of our results on the models of dust evolution in
proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter
Interferometric Evidence for Resolved Warm Dust in the DQ Tau System
We report on near-infrared (IR) interferometric observations of the
double-lined pre-main sequence (PMS) binary system DQ Tau. We model these data
with a visual orbit for DQ Tau supported by the spectroscopic orbit & analysis
of \citet{Mathieu1997}. Further, DQ Tau exhibits significant near-IR excess;
modeling our data requires inclusion of near-IR light from an 'excess' source.
Remarkably the excess source is resolved in our data, similar in scale to the
binary itself ( 0.2 AU at apastron), rather than the larger circumbinary
disk ( 0.4 AU radius). Our observations support the \citet{Mathieu1997}
and \citet{Carr2001} inference of significant warm material near the DQ Tau
binary.Comment: 14 pgs, 3 figures, ApJL in pres
F-region drift velocities from incoherent-scatter measurements at Millstone Hill
F-region drift velocities measured at Millstone Hill from 1968 to 1974 are presented in tabular form. A brief description of the measurement procedures is also given
Strapdown inertial measurement unit computer, volume 1 Final report
Strapdown inertial measurement unit design, calculations, and operating instruction
Dynamical Structure of the Molecular Interstellar Medium in an Extremely Bright, Multiply Lensed z ≃ 3 Submillimeter Galaxy Discovered with Herschel
We report the detection of CO(J = 5 → 4), CO(J = 3 → 2), and CO(J = 1 → 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 ± 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of ~9" and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'_(CO(1-0)) = (4.17 ± 0.41), L'_(CO(3-2)) = (3.96 ± 0.20), and L'_(CO(5-4)) = (3.45 ± 0.20) × 10^(10) (μL/10.9)^(–1) K km s^(–1) pc^2, corresponding to luminosity ratios of r_(31) = 0.95 ± 0.10, r_(53) = 0.87 ± 0.06, and r_(51) = 0.83 ± 0.09. This suggests a total molecular gas mass of M_(gas) = 3.3×10^(10) (α_(CO)/0.8) (μ_L/10.9)^(–1) M_☉. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, "wet" (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing
Calculation of conductivities and currents in the ionosphere
Formulas and procedures to calculate ionospheric conductivities are summarized. Ionospheric currents are calculated using a semidiurnal E-region neutral wind model and electric fields from measurements at Millstone Hill. The results agree well with ground based magnetogram records for magnetic quiet days
Recommended from our members
Iron Oxide Grains in Stardust Track 121 Grains as Evidence of Comet Wild 2 Hydrothermal Alteration
Stardust Track 121 terminal grains contain Fe-oxide. These are consistent with the presence of hydrothermal alteration on the Comet Wild 2 parent body
Dynamic Radio-Frequency Transverse Susceptibility in Magnetic Nanoparticle Systems
A novel resonant method based on a tunnel-diode oscillator (TDO) is used to
study the dynamic transverse susceptibility in a Fe nanoparticle system. The
magnetic system consists of an aggregate of nanometer-size core (Au)-shell (Fe)
structure, synthesized by reverse micelle methods. Static and dynamic
magnetization measurements carried out in order to characterize the system
reveal a superparamagnetic behavior at high temperature. The field-dependent
transverse susceptibility at radio-frequencies (RF), for different temperatures
reveals distinct peak structure at characteristics fields (H_k, H_c) which
changes with temperature. It is proposed that relaxation processes could
explain the influence of the temperature on the field dependence of the
transverse susceptibility on the MI.Comment: 3 pages, 2-column, 3 figures, To be published in J. Appl. Phys. 2000
(44th Annual MMM proceedings
ALMA observations of the debris disk around the young Solar Analog HD 107146
We present ALMA continuum observations at a wavelength of 1.25 mm of the
debris disk surrounding the 100 Myr old solar analog HD 107146. The
continuum emission extends from about 30 to 150 AU from the central star with a
decrease in the surface brightness at intermediate radii. We analyze the ALMA
interferometric visibilities using debris disk models with radial profiles for
the dust surface density parametrized as i) a single power-law, ii) a single
power-law with a gap, and iii) a double power-law. We find that models with a
gap of radial width AU at a distance of AU from the central
star, as well as double power-law models with a dip in the dust surface density
at AU provide significantly better fits to the ALMA data than single
power-law models. We discuss possible scenarios for the origin of the HD 107146
debris disk using models of planetesimal belts in which the formation of
Pluto-sized objects trigger disruptive collisions of large bodies, as well as
models which consider the interaction of a planetary system with a planetesimal
belt and spatial variation of the dust opacity across the disk. If future
observations with higher angular resolution and sensitivity confirm the
fully-depleted gap structure discussed here, a planet with a mass of
approximately a few Earth masses in a nearly circular orbit at AU
from the central star would be a possible explanation for the presence of the
gap.Comment: (38 pages, 7 figures, accepted for publication in ApJ
- …