110 research outputs found

    The 3-D solar radioastronomy and the structure of the corona and the solar wind

    Get PDF
    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind

    Space storm measurements of the July 2005 solar extreme events from the low corona to the Earth

    Full text link
    The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13-14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.Comment: Advances in Space Research, Volume 43, Issue 4, p. 600-60

    The improved ARTEMIS IV multichannel solar radio spectrograph of the University of Athens

    Full text link
    We present the improved solar radio spectrograph of the University of Athens operating at the Thermopylae Satellite Telecommunication Station. Observations now cover the frequency range from 20 to 650 MHz. The spectrograph has a 7-meter moving parabola fed by a log-periodic antenna for 100 650 MHz and a stationary inverted V fat dipole antenna for the 20 100 MHz range. Two receivers are operating in parallel, one swept frequency for the whole range (10 spectrums/sec, 630 channels/spectrum) and one acousto-optical receiver for the range 270 to 450 MHz (100 spectrums/sec, 128 channels/spectrum). The data acquisition system consists of two PCs (equipped with 12 bit, 225 ksamples/sec ADC, one for each receiver). Sensitivity is about 3 SFU and 30 SFU in the 20 100 MHz and 100 650 MHz range respectively. The daily operation is fully automated: receiving universal time from a GPS, pointing the antenna to the sun, system calibration, starting and stopping the observations at preset times, data acquisition, and archiving on DVD. We can also control the whole system through modem or Internet. The instrument can be used either by itself or in conjunction with other instruments to study the onset and evolution of solar radio bursts and associated interplanetary phenomena.Comment: Experimental Astronomy, Volume 21, Issue 1, pp.41-5

    Solar flares with and without SOHO/LASCO coronal mass ejections and type II shocks

    Full text link
    We analyse of a set of radio rich (accompanied by type IV or II bursts) solar flares and their association with SOHO/LASCO Coronal Mass Ejections in the period 1998 2000. The intensity, impulsiveness and energetics of these events are investigated. We find that, on the average, flares associated both with type IIs and CMEs are more impulsive and more energetic than flares associated with type IIs only (without CME reported), as well as flares accompanied by type IV continua but not type II shocks. From the last two classes, flares with type II bursts (without CMEs reported) are the shortest in duration and the most impulsive.Comment: Advances in Space Research, Volume 38, Issue 5, p. 1007-101

    Type II and IV radio bursts in the active period October-November 2003

    Full text link
    In this report we present the Type II and IV radio bursts observed and analyzed by the radio spectrograph ARTEMIS IV1, in the 650-20MHz frequency range, during the active period October-November 2003. These bursts exhibit very rich fine structures such fibers, pulsations and zebra patterns which is associated with certain characteristics of the associated solar flares and CMEs.Comment: Recent Advances in Astronomy and Astrophysics: 7th International Conference of the Hellenic Astronomical Society. AIP Conference Proceedings, Volume 848, pp. 199-206 (2006

    Ten Years of the Solar Radiospectrograph ARTEMIS-IV

    Full text link
    The Solar Radiospectrograph of the University of Athens (ARTEMIS-IV) is in operation at the Thermopylae Satellite Communication Station since 1996. The observations extend from the base of the Solar Corona (650 MHz) to about 2 Solar Radii (20 MHz) with time resolution 1/10-1/100 sec. The instruments recordings, being in the form of dynamic spectra, measure radio flux as a function of height in the corona; our observations are combined with spatial data from the Nancay Radioheliograph whenever the need for 3D positional information arises. The ARTEMIS-IV contribution in the study of solar radio bursts is two fold- Firstly, in investigating new spectral characteristics since its high sampling rate facilitates the study of fine structures in radio events. On the other hand it is used in studying the association of solar bursts with interplanetary phenomena because of its extended frequency range which is, furthermore, complementary to the range of the WIND/WAVES receivers and the observations may be readily combined. This reports serves as a brief account of this operation. Joint observations with STEREO/WAVES and LOFAR low frequency receivers are envisaged in the future
    corecore