709 research outputs found

    Orthogonal U(1)'s, Proton Stability and Extra Dimensions

    Get PDF
    In models with a low quantum gravity scale, one might expect that all operators consistent with gauge symmetries are present in the low-energy effective theory. If this is the case, some mechanism must be present to adequately suppress operators that violate baryon number. Here we explore the possibility that the desired suppression is a consequence of an additional, spontaneously-broken, non-anomalous U(1) symmetry that is orthogonal to hypercharge. We show that successful models can be constructed in which the additional particle content necessary to cancel anomalies is minimal, and compatible with the constraints from precision electroweak measurements and gauge unification. If unification is sacrificed, and only the new U(1) and its associated Higgs fields live in the bulk, it is possible that the gauge field zero mode and first few Kaluza-Klein excitations lie within the kinematic reach of the Tevatron. For gauge couplings not much smaller than that of hypercharge, we show that these highly leptophobic states could evade detection at Run I, but be discovered at Run II. Our scenario presents an alternative to the `cartographic' solution to baryon number violation in which leptons and quarks are separated in an extra dimension.Comment: 16 pages LaTeX, 4 figure

    Unusual High-Energy Phenomenology of Lorentz-Invariant Noncommutative Field Theories

    Full text link
    It has been suggested that one may construct a Lorentz-invariant noncommutative field theory by extending the coordinate algebra to additional, fictitious coordinates that transform nontrivially under the Lorentz group. Integration over these coordinates in the action produces a four-dimensional effective theory with Lorentz invariance intact. Previous applications of this approach, in particular to a specific construction of noncommutative QED, have been studied only in a low-momentum approximation. Here we discuss Lorentz-invariant field theories in which the relevant physics can be studied without requiring an expansion in the inverse scale of noncommutativity. Qualitatively, we find that tree-level scattering cross sections are dramatically suppressed as the center-of-mass energy exceeds the scale of noncommutativity, that cross sections that are isotropic in the commutative limit can develop a pronounced angular dependence, and that nonrelativistic potentials (for example, the Coloumb potential) become nonsingular at the origin. We consider a number of processes in noncommutative QED that may be studied at a future linear collider. We also give an example of scattering via a four-fermion operator in which the noncommutative modifications of the interaction can unitarize the tree-level amplitude, without requiring any other new physics in the ultraviolet.Comment: 24 pages LaTeX, 4 eps figures (v2: reference added, v3: minor clarifications

    1/Nc Countings in Baryons

    Full text link
    The 1/Nc1/N_c power countings for baryon decays and configuration mixings are determined by means of a non-relativistic quark picture. Such countings are expected to be robust under changes in the quark masses, and therefore valid as these become light. It is shown that excited baryons have natural widths of O(Nc0){\cal{O}}(N_c^0). These dominant widths are due to the decays that proceed directly to the ground state baryons, with cascade decays being suppressed to O(1/Nc){\cal{O}}(1/N_c). Configuration mixings, defined as mixings between states belonging to different O(3)Ă—SU(2Nf)O(3)\times SU(2 N_f) multiplets, are shown to be sub-leading in an expansion in 1/Nc1/\sqrt{N_c} when they involve the ground state baryons, while the mixings between excited states can be O(Nc0){\cal{O}}(N_c^0).Comment: 19 pages, 1 figure An omission that changes the conclusions on configuration mixings has been correcte

    A Hexagonal Theory of Flavor

    Get PDF
    We construct a supersymmetric theory of flavor based on the discrete gauge group (D_6)^2, where D_6 describes the symmetry of a regular hexagon under proper rotations in three dimensions. The representation structure of the group allows one to distinguish the third from the lighter two generations of matter fields, so that in the symmetry limit only the top quark Yukawa coupling is allowed and scalar superpartners of the first two generations are degenerate. Light fermion Yukawa couplings arise from a sequential breaking of the flavor symmetry, and supersymmetric flavor-changing processes remain adequately suppressed. We contrast our model with others based on non-Abelian discrete gauge symmetries described in the literature, and discuss the challenges in constructing more minimal flavor models based on this approach.Comment: 19 pages, ReVTeX, 1 eps figur

    Masses of the 70- Baryons in Large Nc QCD

    Get PDF
    The masses of the negative parity 70-plet baryons are analyzed in large N_c QCD to order 1/N_c and to first order in SU(3) symmetry breaking. The existing experimental data are well reproduced and twenty new observables are predicted. The leading order SU(6) spin-flavor symmetry breaking is small and, as it occurs in the quark model, the subleading in 1/N_c hyperfine interaction is the dominant source of the breaking. It is found that the Lambda(1405) and Lambda(1520) are well described as three-quark states and spin-orbit partners. New relations between splittings in different SU(3) multiplets are found.Comment: 11 pages; references were added and a couple of improvements to the text were mad

    Universal Extra Dimensions and Kaluza Klein Bound States

    Get PDF
    We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of Universal Extra Dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK-quarks near threshold. For typical values of model parameters, we find that "KK-quarkonia" have widths in the 10 - 100 MeV range, and production cross sections of order a few picobarns for the lightest resonances. Two body decays of the constituent KK-quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes.Comment: 21 pages LaTeX, 9 eps figure
    • …
    corecore