9,445 research outputs found
A way to estimate the heavy quark thermalization rate from the lattice
The thermalization rate of a heavy quark is related to its momentum diffusion
coefficient. Starting from a Kubo relation and using the framework of the heavy
quark effective theory, we argue that in the large-mass limit the momentum
diffusion coefficient can be defined through a certain Euclidean correlation
function, involving color-electric fields along a Polyakov loop. Furthermore,
carrying out a perturbative computation, we demonstrate that the spectral
function corresponding to this correlator is relatively flat at small
frequencies. Therefore, unlike in the case of several other transport
coefficients, for which the narrowness of the transport peak makes analytic
continuation from Euclidean lattice data susceptible to severe systematic
uncertainties, it appears that the determination of the heavy quark
thermalization rate could be relatively well under control.Comment: 17 pages. v2: clarifications and references added, published versio
Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3
We report long-range ordered antiferromagnetism concomitant with local iron
displacements in the spin-ladder compound BaFeSe. Short-range magnetic
correlations, present at room temperature, develop into long-range
antiferromagnetic order below T = 256 K, with no superconductivity down to
1.8 K. Built of ferromagnetic Fe plaquettes, the magnetic ground state
correlates with local displacements of the Fe atoms. These iron displacements
imply significant magnetoelastic coupling in FeX-based materials, an
ingredient hypothesized to be important in the emergence of superconductivity.
This result also suggests that knowledge of these local displacements is
essential for properly understanding the electronic structure of these systems.
As with the copper oxide superconductors two decades ago, our results highlight
the importance of reduced dimensionality spin ladder compounds in the study of
the coupling of spin, charge, and atom positions in superconducting materials
A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians
A density-matrix renormalization group (DMRG) method for highly anisotropic
two-dimensional systems is presented. The method consists in applying the usual
DMRG in two steps. In the first step, a pure one dimensional calculation along
the longitudinal direction is made in order to generate a low energy
Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by
coupling in the transverse direction the 1D Hamiltonians. The method is applied
to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure
Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System
We use the density matrix renormalization group (DMRG) to map out the ground
state of a XY-spin chain coupled to dispersionless phonons of frequency . We confirm the existence of a critical spin-phonon coupling for the onset of the spin gap bearing the signature of
a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover
when the spin-Peierls gap is of order . In the classical
regime, , the mean-field parameters are strongly renormalized
by non-adiabatic corrections. This is the first application of the DMRG to
phonons.Comment: 10 pages, 5 figures. To be published in PR
Orbital Selective Magnetism in the Spin-Ladder Iron Selenides BaKFeSe
Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of
BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a
decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected
from the change in electron count from Ba to K, and occurs with
the loss of the displacements of Fe atoms from ideal positions in the ladders,
as found by neutron pair distribution function analysis. Intermediate
compositions remain insulating, and magnetic susceptibility measurements show a
suppression of magnetic order and probable formation of a spin-glass. Together,
these results imply an orbital-dependent selection of magnetic versus bonded
behavior, driven by relative bandwidths and fillings.Comment: Final versio
Fermi Surface of The One-dimensional Kondo Lattice Model
We show a strong indication of the existence of a large Fermi surface in the
one-dimensional Kondo lattice model. The characteristic wave vector of the
model is found to be , being the density of the
conduction electrons. This result is at first obtained for a variant of the
model that includes an antiferromagnetic Heisenberg interaction between
the local moments. It is then directly observed in the conventional Kondo
lattice , in the narrow range of Kondo couplings where the long
distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure
Density Matrix Renormalization Group Study of One-Dimensional Acoustic Phonons
We study the application of the density matrix renormalization group (DMRG)
to systems with one-dimensional acoustic phonons. We show how the use of a
local oscillator basis circumvents the difficulties with the long-range
interactions generated in real space using the normal phonon basis. When
applied to a harmonic atomic chain, we find excellent agreement with the exact
solution even when using a modest number of oscillator and block states (a few
times ten). We discuss the use of this algorithm in more complex cases and
point out its value when other techniques are deficient.Comment: 12 pages. To be published in PRB rapid co
Ground-state properties of the One-dimensional Kondo Lattice at partial Band-filling
We compute the magnetic structure factor, the singlet correlation function
and the momentum distribution of the one-dimensional Kondo lattice model at the
density . The density matrix-renormalization group method is used.
We show that in the weak-coupling regime, the ground state is paramagnetic. We
argue that a Luttinger liquid description of the model in this region is
consistent with our calculations . In the strong-coupling regime, the ground
state becomes ferromagnetic. The conduction electrons show a spinless-fermion
like behavior.Comment: 8 pages, Latex, 5 figures included, to be published in PRB (Rapid
Communications
Genetic heterogeneity of hepatitis E virus in Darfur, Sudan, and neighboring Chad.
The within-outbreak diversity of hepatitis E virus (HEV) was studied during the outbreak of hepatitis E that occurred in Sudan in 2004. Specimens were collected from internally displaced persons living in a Sudanese refugee camp and two camps implanted in Chad. A comparison of the sequences in the ORF2 region of 23 Sudanese isolates and five HEV samples from the two Chadian camps displayed a high similarity (>99.7%) to strains belonging to Genotype 1. But four isolates collected in one of the Chadian camps were close to Genotype 2. Circulation of divergent strains argues for possible multiple sources of infection
The expanding repertoire of receptor activity modifying protein (RAMP) function
Receptor activity modifying proteins (RAMPs) associate with G-protein-coupled receptors (GPCRs) at the plasma membrane and together bind a variety of peptide ligands, serving as a communication interface between the extracellular and intracellular environments. The collection of RAMP-interacting GPCRs continues to expand and now consists of GPCRs from families A, B, and C, suggesting that RAMP activity is extremely prevalent. RAMP association with GPCRs can regulate GPCR function by altering ligand binding, receptor trafficking and desensitization, and downstream signaling pathways. Here, we elaborate on these RAMP-dependent mechanisms of GPCR regulation, which provide opportunities for pharmacological intervention
- …