33 research outputs found

    Evaluation of the diagnostic accuracy and cost of different methods for the assessment of severe  anaemia in hospitalised children in Eastern Uganda [version 2; peer review: 3 approved]

    Get PDF
    Background: Severe anaemia in children requiring hospital admission is a major public health problem in malaria-endemic Africa. Affordable methods for the assessment of haemoglobin have not been validated against gold standard measures for identifying those with severe anaemia requiring a blood transfusion, despite this resource being in short supply. Methods: We conducted a prospective descriptive study of hospitalized children aged 2 months – 12 years at Mbale and Soroti Regional Referral Hospitals, assessed to have pallor at triage by a nurse and two clinicians. Haemoglobin levels were measured using the HemoCue ® Hb 301 system (gold standard); the Haemoglobin Colour Scale; Colorimetric and Sahli’s methods. We report clinical assessments of the degree of pallor, clinicians’ intention to transfuse, inter-observer agreement, limits of agreement using the Bland-Altman method, and the sensitivity and specificity of each method in comparison to HemoCue ® Results: We recruited 322 children, clinically-assessed by the admitting nurse (n=314) as having severe (166; 51.6%), moderate (97; 30.1%) or mild (51; 15.8%) pallor. Agreement between the clinicians and the nurse were good: Clinician A Kappa=0.68 (0.60–0.76) and Clinician B Kappa=0.62 (0.53–0.71) respectively ( P<0.0001 for both). The nurse, clinicians A and B indicated that of 94/116 (81.0%), 83/121 (68.6%) and 93/120 (77.5%) respectively required transfusion. HemoCue ® readings indicated anaemia as mild (Hb10.0–11.9g/dl) in 8/292 (2.7%), moderate (Hb5.0–9.9g/dl) in 132/292 (45.2%) and severe (Hb<5.0g/dl) in 152/292 (52.1%). Comparing to HemoCue® the Sahli’s method performed best in estimation of severe anaemia, with sensitivity 84.0% and specificity 87.9% and a Kappa score of  0.70 (0.64–0.80). Conclusions: Clinical assessment of severe pallor results has a low specificity for the diagnosis of severe anaemia. To target blood transfusion Hb measurement by either Hemocue® or Sahli’s method for the cost of USD 4 or and USD 0.25 per test, respectively would be more cost-effective

    Evaluation of the diagnostic accuracy and cost of different methods for the assessment of severe  anaemia in hospitalised children in Eastern Uganda [version 1; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: Severe anaemia in children requiring hospital admission is a major public health problem in malaria-endemic Africa. Affordable methods for the assessment of haemoglobin have not been validated against gold standard measures for identifying those with severe anaemia requiring a blood transfusion, despite this resource being in short supply. Methods: We conducted a prospective descriptive study of hospitalized children aged 2 months – 12 years at Mbale and Soroti Regional Referral Hospitals, assessed to have pallor at triage by a nurse and two clinicians. Haemoglobin levels were measured using the HemoCue® Hb 301 system (gold standard); the Haemoglobin Colour Scale; calorimetric and Sahli’s methods. We report clinical assessments of the degree of pallor, clinicians’ intention to transfuse, inter-observer agreement, limits of agreement using the Bland-Altman method, and the sensitivity and specificity of each method in comparison to HemoCue® Results: We recruited 322 children assessed by the admitting nurse as having severe (164; 51.0%), moderate (99; 30.7%) or mild (57; 17.7%) pallor. Agreement between the clinicians and the nurse were good: Clinician A Kappa=0.68 (0.60–0.76) and Clinician B Kappa=0.62 (0.53–0.71) respectively (P<0.0001 for both). The nurse, clinicians A and B indicated that of 94/116 (81.0%), 83/121 (68.6%) and 93/120 (77.5%) respectively required transfusion. HemoCue® readings indicated anaemia as mild (Hb10.0–11.9g/dl) in 8/292 (2.7%), moderate (Hb5.0–9.9g/dl) in 132/292 (45.2%) and severe (Hb<5.0g/dl) in 152/292 (52.1%). Comparing to HemoCue® the Sahli’s method performed best in estimation of severe anaemia, with sensitivity 84.0% and specificity 87.9% and a Kappa score of  0.70 (0.64–0.80). Conclusions: Clinical assessment of severe pallor results has a low specificity for the diagnosis of severe anaemia. To target blood transfusion Hb measurement by either Hemocue® or Sahli’s method for the cost of USD 4 or and USD 0.25 per test, respectively would be more cost-effective

    Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study

    Get PDF
    Background: Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms—many related to the structure or function of red blood cells—and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. Methods: We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. Findings: Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11–0·20; p=2·61 × 10−58), blood group O (0·74, 0·66–0·82; p=6·26 × 10−8), and –α3·7-thalassaemia (0·83, 0·76–0·90; p=2·06 × 10−6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63–0·92; p=0·001) and FREM3 (0·64, 0·53–0·79; p=3·18 × 10−14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49–0·68; p=3·22 × 10−11), as was homozygosity (0·26, 0·11–0·62; p=0·002). Interpretation: Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. Funding: Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill &amp; Melinda Gates Grand Challenges in Global Health Initiative

    Two complement receptor one alleles have opposing associations with cerebral malaria and interact with α+thalassaemia

    Get PDF
    Malaria has been a major driving force in the evolution of the human genome. In sub-Saharan African populations, two neighbouring polymorphisms in the Complement Receptor One (CR1) gene, named Sl2 and McCb, occur at high frequencies, suggesting selection by malaria. Previous studies have been inconclusive. Using a large case-control study of severe malaria in Kenyan children and statistical models adjusted for confounders, we demonstrate that Sl2 and McCb have opposing malaria associations. The Sl2 polymorphism is associated with markedly reduced odds of cerebral malaria and death, while the McCb polymorphism is associated with increased odds of cerebral malaria. We also identified an unexpected interaction between Sl2 and α+thalassaemia, revealing that the protective association of Sl2 was greatest in children with normal α-globin. The complex relationship between these three mutations may explain previous conflicting findings, and the data highlight the importance of considering genetic interactions in disease-association studies

    Routine Paediatric Sickle Cell Disease (SCD) Outpatient Care in a Rural Kenyan Hospital: Utilization and Costs

    Get PDF
    More than 70% of children with sickle cell disease (SCD) are born in sub-Saharan Africa where the prevalence at birth of this disease reaches 2% or higher in some selected areas. There is a dearth of knowledge on comprehensive care received by children with SCD in sub-Saharan Africa and its associated cost. Such knowledge is important for setting prevention and treatment priorities at national and international levels. This study focuses on routine care for children with SCD in an outpatient clinic of the Kilifi District Hospital, located in a rural area on the coast of Kenya.To estimate the per-patient costs for routine SCD outpatient care at a rural Kenyan hospital.We collected routine administrative and primary cost data from the SCD outpatient clinic and supporting departments at Kilifi District Hospital, Kenya. Costs were estimated by evaluating inputs - equipment, medication, supplies, building use, utility, and personnel - to reflect the cost of offering this service within an existing healthcare facility. Annual economic costs were similarly calculated based on input costs, prorated lifetime of equipment and appropriate discount rate. Sensitivity analyses evaluated these costs under different pay scales and different discount rate.We estimated that the annual economic cost per patient attending the SCD clinic was USD 138 in 2010 with a range of USD 94 to USD 229.This study supplies the first published estimate of the cost of routine outpatient care for children born with SCD in sub-Saharan Africa. Our study provides policy makers with an indication of the potential future costs of maintaining specialist outpatient clinics for children living with SCD in similar contexts

    Malaria protection due to sickle haemoglobin depends on parasite genotype.

    Get PDF
    Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations

    Validating physician-certified verbal autopsy and probabilistic modeling (InterVA) approaches to verbal autopsy interpretation using hospital causes of adult deaths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common method for determining cause of death is certification by physicians based either on available medical records, or where such data are not available, through verbal autopsy (VA). The physician-certification approach is costly and inconvenient; however, recent work shows the potential of a computer-based probabilistic model (InterVA) to interpret verbal autopsy data in a more convenient, consistent, and rapid way. In this study we validate separately both physician-certified verbal autopsy (PCVA) and the InterVA probabilistic model against hospital cause of death (HCOD) in adults dying in a district hospital on the coast of Kenya.</p> <p>Methods</p> <p>Between March 2007 and June 2010, VA interviews were conducted for 145 adult deaths that occurred at Kilifi District Hospital. The VA data were reviewed by a physician and the cause of death established. A range of indicators (including age, gender, physical signs and symptoms, pregnancy status, medical history, and the circumstances of death) from the VA forms were included in the InterVA for interpretation. Cause-specific mortality fractions (CSMF), Cohen's kappa (κ) statistic, receiver operating characteristic (ROC) curves, sensitivity, specificity, and positive predictive values were applied to compare agreement between PCVA, InterVA, and HCOD.</p> <p>Results</p> <p>HCOD, InterVA, and PCVA yielded the same top five underlying causes of adult deaths. The InterVA overestimated tuberculosis as a cause of death compared to the HCOD. On the other hand, PCVA overestimated diabetes. Overall, CSMF for the five major cause groups by the InterVA, PCVA, and HCOD were 70%, 65%, and 60%, respectively. PCVA versus HCOD yielded a higher kappa value (κ = 0.52, 95% confidence interval [CI]: 0.48, 0.54) than the InterVA versus HCOD which yielded a kappa (κ) value of 0.32 (95% CI: 0.30, 0.38). Overall, (κ) agreement across the three methods was 0.41 (95% CI: 0.37, 0.48). The areas under the ROC curves were 0.82 for InterVA and 0.88 for PCVA. The observed sensitivities and specificities across the five major causes of death varied from 43% to 100% and 87% to 99%, respectively, for the InterVA/PCVA against the HCOD.</p> <p>Conclusion</p> <p>Both the InterVA and PCVA compared well with the HCOD at a population level and determined the top five underlying causes of death in the rural community of Kilifi. We hope that our study, albeit small, provides new and useful data that will stimulate further definitive work on methods of interpreting VA data.</p

    Polymorphism in a lincRNA Associates with a Doubled Risk of Pneumococcal Bacteremia in Kenyan Children.

    Get PDF
    Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.Wellcome Trust (Grant ID: 084716/Z/08/Z)This is the final version of the article. It first appeared from Cell Press/Elsevier via http://dx.doi.org/10.1016/j.ajhg.2016.03.02

    Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children on the coast of Kenya: a case-control and a cohort study.

    Get PDF
    International audienceBACKGROUND:The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya.METHODS:We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3-12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category.FINDINGS:2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant protection from severe malaria (odds ratio [OR] 0·82, 95% CI 0·70-0·97; p=0·020) among G6PD c.202T heterozygous girls but no evidence for protection among G6PD c.202T hemizygous boys and homozygous girls (OR 1·18, 0·99-1·40; p=0·056). Median follow-up for the mild disease cohort study was 2·24 years (IQR 2·22-2·85). G6PD c.202T had no effect on other common diseases of childhood in heterozygous girls (incidence rate ratio 0·98, 95% CI 0·86-1·11; p=0·82) or homozygous girls or hemizygous boys (0·93, 0·82-1·04; p=0·25), with the sole exception of a marginally significant increase in the incidence of helminth infections among heterozygous girls.INTERPRETATION:Heterozygous girls might be the driving force for the positive selection of G6PD deficiency alleles. Further studies are needed to definitively establish the mechanisms by which G6PD deficiency confers an advantage against malaria in heterozygous individuals. Such studies could lead to the development of new treatments
    corecore