73 research outputs found

    The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development

    Get PDF
    Important goals in understanding leaf development are to identify genes involved in pattern specification, and also genes that translate this information into cell types and tissue structure. Loss-of-function mutations at the JAGGED (JAG) locus result in Arabidopsis plants with abnormally shaped lateral organs including serrated leaves, narrow floral organs, and petals that contain fewer but more elongate cells. jag mutations also suppress bract formation in leafy, apetala1 and apetala2 mutant backgrounds. The JAG gene was identified by map-based cloning to be a member of the zinc finger family of plant transcription factors and encodes a protein similar in structure to SUPERMAN with a single C2H2-type zinc finger, a proline-rich motif and a short leucine-rich repressor motif. JAG mRNA is localized to lateral organ primordia throughout the plant but is not found in the shoot apical meristem. Misexpression of JAG results in leaf fusion and the development of ectopic leaf-like outgrowth from both vegetative and floral tissues. Thus, JAG is necessary for proper lateral organ shape and is sufficient to induce the proliferation of lateral organ tissue

    Pattern formation during de novo assembly of the Arabidopsis shoot meristem

    Get PDF
    Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis

    PIN-FORMED1 polarity in the plant shoot epidermis is insensitive to the polarity of neighboring cells

    Get PDF
    At the Arabidopsis shoot apex, epidermal cells are planar-polarized along an axis marked by the asymmetric localization patterns of several proteins including PIN-FORMED1 (PIN1), which facilitates the directional efflux of the plant hormone auxin to pattern phyllotaxis. While PIN1 polarity is known to be regulated non -cell autonomously via the MONOPTEROS (MP) transcription factor, how this occurs has not been determined. Here, we use mosaic expression of the serine threonine kinase PINOID (PID) to test whether PIN1 polarizes according to the polarity of neighboring cells. Our findings reveal that PIN1 is insensitive to the po-larity of PIN1 in neighboring cells arguing against auxin flux or extracellular auxin concentrations acting as a polarity cue, in contrast to previous model proposals

    TOPLESS Regulates Apical Embryonic Fate in Arabidopsis

    Get PDF
    The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFERASE GNAT SUPERFAMILY1 suppress the tpl-1 phenotype. Mutations in HISTONE DEACETYLASE19, a putative corepressor, increase the penetrance of tpl-1 and display similar apical defects. These data point to a transcriptional repression mechanism that prevents root formation in the shoot pole during Arabidopsis embryogenesis

    Cell cycle regulates cell type in the Arabidopsis sepal

    Get PDF
    The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type

    Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.

    Get PDF
    The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.The research leading to these results received funding from the Australian Research Council (M.G.H.) and European Research Council under the European Union’s Seventh Framework Programme ( FP/2007-2013 )/ERC grant agreement 261081 (M.G.H.). The work was also supported by the European Molecular Biology Laboratory (N.B., C.O., and M.G.H.), EMBL International PhD Programme (N.B.), Gatsby Charitable Foundation ( GAT3395/PR4 ) (H.J.), and Swedish Research Council ( VR2013-4632 ) (H.J.).This is the final version of the article. It first appeared from Elsevier (Cell Press) via https://doi.org/10.1016/j.cub.2016.09.04

    Plant Stem Cell Signaling Involves Ligand-Dependent Trafficking of the CLAVATA1 Receptor Kinase

    Get PDF
    Background: Cell numbers in above-ground meristems of plants are thought to be maintained by a feedback loop driven by perception of the glycopeptide ligand CLAVATA3 (CLV3) by the CLAVATA1 (CLV1) receptor kinase and the CLV2/CORYNE (CRN) receptor-like complex [1]. CLV3 produced in the stem cells at the meristem apex limits the expression level of the stem cell-promoting homeodomain protein WUSCHEL (WUS) in the cells beneath, where CLV1 and WUS RNA are localized. WUS downregulation nonautonomously reduces stem cell proliferation. Overexpression of CLV3 eliminates the stem cells, causing meristem termination [2], and loss of CLV3 function allows meristem overproliferation [3]. There are many questions regarding the CLV3/CLV1 interaction, including where in the meristem it occurs, how it is regulated, and how it is that a large range of CLV3 concentrations gives no meristem size phenotype [4]. Results: Here we use genetics and live imaging to examine the cell biology of CLV1 in Arabidopsis meristematic tissue. We demonstrate that plasma membrane-localized CLV1 is reduced in concentration by CLV3, which causes trafficking of CLV1 to lytic vacuoles. We find that changes in CLV2 activity have no detectable effects on CLV1 levels. We also find that CLV3 appears to diffuse broadly in meristems, contrary to a recent sequestration model [5]. Conclusions: This study provides a new model for CLV1 function in plant stem cell maintenance and suggests that downregulation of plasma membrane-localized CLV1 by its CLV3 ligand can account for the buffering of CLV3 signaling in the maintenance of stem cell pools in plants

    Cell type boundaries organize plant development

    Get PDF
    In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.The EMM laboratory is supported by funds from the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through grant GBMF3406). The research leading to these results received funding from the Australian Research Council (MGH) and European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 261081 (MGH), as well as the People Programme (Marie Curie Actions) under REA grant agreement n. 255089 (PS). The work was also supported by: the European Molecular Biology Laboratory (XY, MPC, CO, PS, NB, HR and MGH); the EMBL International PhD Programme (XY, NB and MPC); Gatsby Charitable Foundation (GAT3395/PR4) (HJ) and Swedish Research Council (VR2013-4632) (HJ)

    Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem

    Get PDF
    Background: Plants produce leaf and flower primordia from a specialized tissue called the shoot apical meristem (SAM). Genetic studies have identified a large number of genes that affect various aspects of primordium development including positioning, growth, and differentiation. So far, however, a detailed understanding of the spatio-temporal sequence of events leading to primordium development has not been established. Results: We use confocal imaging of green fluorescent protein (GFP) reporter genes in living plants to monitor the expression patterns of multiple proteins and genes involved in flower primordial developmental processes. By monitoring the expression and polarity of PINFORMED1 (PIN1), the auxin efflux facilitator, and the expression of the auxin-responsive reporter DR5, we reveal stereotypical PIN1 polarity changes which, together with auxin induction experiments, suggest that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. Imaging of multiple GFP-protein fusions shows that these dynamics also correlate with the specification of primordial boundary domains, organ polarity axes, and the sites of floral meristem initiation. Conclusions: These results provide new insight into auxin transport dynamics during primordial positioning and suggest a role for auxin transport in influencing primordial cell type

    Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux

    Get PDF
    In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentified, with the PINOID kinase being the only known molecular component. Here, we identify PP2A phosphatase as an important regulator of PIN apical-basal targeting and auxin distribution. Genetic analysis, localization, and phosphorylation studies demonstrate that PP2A and PINOID both partially colocalize with PINs and act antagonistically on the phosphorylation state of their central hydrophilic loop, hence mediating PIN apical-basal polar targeting. Thus, in plants, polar sorting by the reversible phosphorylation of cargos allows for their conditional delivery to specific intracellular destinations. In the case of PIN proteins, this mechanism enables switches in the direction of intercellular auxin fluxes, which mediate differential growth, tissue patterning, and organogenesis
    corecore