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SUMMARY

The periodic formation of plant organs such as leaves
and flowers gives rise to intricate patterns that have
fascinated biologists and mathematicians alike for
hundreds of years [1]. The plant hormone auxin plays
acentral role in establishing thesepatternsbypromot-
ing organ formation at sites where it accumulates due
to itspolar, cell-to-cell transport [2–6].Althoughexper-
imental evidence as well as modeling suggest that
feedback from auxin to its transport direction may
help specify phyllotactic patterns [7–12], the nature
of this feedback remains unclear [13]. Here we reveal
that polarization of the auxin efflux carrier PIN-
FORMED 1 (PIN1) is regulated by the auxin response
transcription factor MONOPTEROS (MP) [14]. We
find that in the shoot, cell polarity patterns follow MP
expression, which in turn follows auxin distribution
patterns. By perturbing MP activity both globally and
locally,we show that localizedMPactivity is necessary
for thegenerationofpolarityconvergencepatternsand
that localized MP expression is sufficient to instruct
PIN1 polarity directions non-cell autonomously, to-
ward MP-expressing cells. By expressing MP in the
epidermis of mp mutants, we further show that
although MP activity in a single-cell layer is sufficient
to promote polarity convergence patterns, MP in
sub-epidermal tissues helps anchor thesepolarity pat-
terns to theunderlyingcells.Overall, ourfindings reveal
a patterning module in plants that determines organ
position by orienting transport of the hormone auxin
toward cells with high levels of MP-mediated auxin
signaling. We propose that this feedback process
acts broadly to generate periodic plant architectures.

RESULTS AND DISCUSSION

PIN1 Polarity Patterns Follow Auxin-Regulated MP
Expression
Because MONOPTEROS (MP) transduces a transcriptional

response from auxin required for flower formation [14, 15], we
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reasoned that feedback fromauxin to its transport directionmight

occur viaMP. To investigate this possibility,we first examined the

expression pattern of a rescuingMP translational fusion to yellow

fluorescent protein for energy transfer (YPet) (pMP::MP-YPet)

in the shoot apical meristem (SAM) in comparison to PIN1 fused

to CFP (PIN1-CFP), and found striking correlations in their local-

ization patterns (Figures 1A–1C). However, we found that MP

marked position i4 (incipient primordium 4) prior to a PIN1

convergence appearing at this site (n = 7 out of 7) (Figure 1D;

Movie S1). And, althoughMP and PIN1 showed a strong correla-

tion at the i3 stage (Figure 1E), a decrease inMPexpression could

be detected surrounding i1 prior to the characteristic reversal of

PIN1 polarity toward adjacent regions [6] (Figures 1F and 1G).

To compare MP expression to auxin distribution patterns, we

also examined expression of the ratiometric auxin marker R2D2

[16] and found its expression pattern to appear almost identical

to that of MP (Figures S1A–S1J). To test whether MP expression

is patterned by auxin in the shoot, as found for other tissues

[17, 18], we treated meristems expressing both MP-YPet and

R2D2 with auxin or N-1-napthylphthalamic acid (NPA) and found

a similar response (Figures S1K–S1R), with higher levels of

MP-YPet transcripts being detected upon auxin treatment (Fig-

ure S1S), confirming that auxin levels tightly regulate MP expres-

sion. Overall, these data are consistent with auxin andMP acting

upstream of PIN1 polarity changes during early organ formation.

Localized MP Activity Is Required for Localized Organ
Initiation
To test whether localized MP expression is required for PIN1

polarity convergence patterns, we examined plants in which

MP cDNA was induced under the control of the ubiquitin-10

promoter (pUBQ10) using dexamethasone (DEX) but found

no obvious associated phenotype. However, examination of

pUBQ10>>MPc-YPet expression within these plants revealed

that MP was still expressed dynamically and remained correlated

with PIN1 polarities, similar to the wild-type (Figure S2A). To test

whether MP expression in these plants was still responsive

to auxin, we monitored pUBQ10>>MPc-YPet expression in

response to 1-Napthaleneacetic acid (NAA) application and

observed an increase and broadening of expression (Figures

S2B and S2C). To test whether the pUBQ10 promoter was auxin

responsive, we checked the meristems of control plants express-

ing pUBQ10::H2B-2XGFP and found that GFP was expressed

more uniformly and did not get upregulated upon auxin addition
ecember 5, 2016 ª 2016 The Authors. Published by Elsevier Ltd. 1
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Figure 1. MP Expression Patterns Predict PIN1 Polarity Changes

(A) pMP::MP-YPet (green) and pPIN1::PIN1-CFP (magenta) expression and localization in the mp-T370 inflorescence meristem (IM).

(B) Meristem in (A) showing pPIN1::PIN1-CFP alone.

(C) Meristem in (A) showing pMP::MP-YPet expression alone.

(D) Magnified view of i4 before PIN1 polarity convergence.

(E) Magnified view of i3 after PIN1 convergence.

(F) Magnified view of i1. Note the low MP expression surrounding i1 prior to PIN1 polarity reversal.

(G) Magnified view of P1 showing reduced MP expression surrounding the primordium and PIN1 polarity oriented away from low-MP-expressing cells.

The arrows indicate the estimated PIN1 polarity direction within the cells. Primordium (P) and incipient primordium (i) stages are numbered i4–P5. Scale bars,

30 mm (A–C), 5 mm (D and E), and 10 mm (F and G). See also Figure S1 and Movie S1.
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(Figures S2D and S2E). This indicates that cis-elements within the

coding region may contribute to the regulation of MP expression

by auxin. To further disrupt MP expression, we engineered silent

mutations in several putative auxin-response elements within the

MP-coding region (Figure S2F) and induced this modified cDNA

using the UBQ10 promoter (pUBQ10>>YPet-MPc mut) in wild-

type plants. Even though this modified cDNA was expressed

more uniformly and did not respond to exogenous auxin applica-

tion (FiguresS2G–S2I), nophenotype in termsof organpositioning
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was observed in wild-type seedlings and inflorescences (Figures

S2J–S2M). We reasoned that endogenous MP expression may

still facilitate the formation of instructive MP gradients in the pres-

ence of uniform transgene expression, and thus transformed this

construct into mp mutants. Although transformed mp mutant

seedlings again showed no obvious phenotype (Figures S2N–

S2Q), in mp mutant inflorescence meristems uniform expression

of YPet-MPcmut resulted in the ectopic growth and lateral fusion

of bract-like organs subtending floral meristems (Figures S2R and



Figure 2. Localized Organogenesis Re-

quires Localized MP Activity

(A) Wild-type seedling 18 days after induction

of pUBQ10>>MPc794-YPet (dotted rectangle) in

comparison to an un-induced plant.

(B) Magnified view of an induced plant from (A).

Note the fusion of the first two leaves.

(C–H) pPIN1::PIN1-CFP expression and polarity

(green) after induction of pUBQ10>>MPc794-

YPet (C–E) compared to mock-treated seedlings

(F–H) before treatment (C and F), 2 days later (D

and G), and 5 days later (E and H). Note the

absence of PIN1 convergences (arrowheads) in (D)

compared to (G). Five days after MPc794-YPet

induction a ring of organ tissue has developed

(outlined by dotted line in E) that is absent inmock-

treated control (H). The inset in (D) showsMPc794-

YPet expression (magenta). The inset in (E) shows

the phenotype after 11 days of MPc794-YPet in-

duction (66%, n = 21).

(I–K) pPIN1::PIN1-CFP expression and polarity

(green) before (I) and after induction of

pUBQ10>>MPc794-YPet (magenta) (J and K) in

mp IM. Note the ring-shaped organ present 5 days

after MPc794-YPet induction (K).

The asterisk in (C) marks the removed cotyledon.

Scale bars, 30 mm (C, D, and F–K) and 50 mm (E).
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S2S). Thus, modulation of MP expression is essential to suppress

bract growth and fusion, but not for specifying periodic positions.

To further investigate the role of MP activity in regulating organ

formation and cell polarity, we truncated MP-YPet to create a

constitutively active form of MP, in which domains III and IV

are deleted [19]. Although prolonged induction of this form of

MP in both wild-type andmpmutants led to transgene silencing,

by imaging plants soon after induction we observed an absence

of distinct PIN1 polarity convergence patterns and the initiation

of non-localized growth at the meristem periphery (Figures 2A–

2E and 2I–2K). The development of subsequent organs was

seldom observed. Mock-treated wild-type control plants

showed normal phyllotactic patterning (Figures 2F–2H). These

data show that localized MP activity is required for localized

PIN1 polarity convergence patterns and organogenesis, indi-

cating thatMP activity plays an instructive rather than permissive

role in regulating organ position.

MP Orients PIN1 Localization Non-Cell Autonomously
To test whether MP feeds back on its own patterns of activation

by directing auxin transport, we utilized Cre-Lox-mediated

recombination to generate clones of cells expressing a func-
Cu
tional MP gene fused to either VENUS

or YPet under the UBQ10 promoter in

two loss-of-function mp mutant back-

grounds (mp-T370 and mp-B4149).

PIN1 polarity was monitored using func-

tional fusions to both GFP and CFP. Eight

days after induction of Cre activity in the

central zone ofmpmutant meristems us-

ing DEX-inducible Cre-GR (glucocorti-

coid receptor) under the control of the
CLAVATA3 promoter [20, 21], we observed organ-like out-

growths associated with MP clones that were not there previ-

ously (Figures 3A and 3B). Time-lapse imaging revealed that

clones expressingMP first appeared 3 days after DEX treatment.

Strikingly, localization of PIN1 started to shift in neighboring cells

toward these clones as they were displaced into the peripheral

zone (Figures 3C–3M and S3H–S3J; Movie S2). We also noted

a gradual increase in MP and PIN1 expression level within the

clones over time, with PIN1 expression decreasing in adjacent

regions farther away (Figures 3E–3H, 3J–3M, and S3B–S3G),

indicating the local accumulation of auxin within the clones and

the depletion nearby. By 6 days, the clones had formed out-

growths with PIN1 polarity convergence points at their distal

tip (Figures 3H and S3E). In addition to observing polarity

responses in epidermal cells adjacent to the clones, we also

observed PIN1 polarity responses in cells underlying these

clones (Figure 3N). Furthermore, we observed several examples

in which MP clones were located in the L2 (layer 2) and, in these

cases, we also observed PIN1 polarity convergence patterns in

L2 and the overlying epidermis (Figures 3O–3Q). These results

demonstrate that local MP expression is sufficient to polarize

cells in a non-cell-autonomous manner in multiple cell layers,
rrent Biology 26, 1–7, December 5, 2016 3



Figure 3. MP Polarizes Cells Non-Cell Autonomously

(A and B) Confocal projection showing themp-B4149 apex expressing pPIN1::PIN1-GFP (magenta) before (A) and 8 days after induction of MP-YPet clones (B)

(green); arrowheads indicate initiating organs coinciding with MP expression.

(C) Frequency of peripheral MP clones associated with PIN1 convergence patterns (n = 60 peripheral clones of MP).

(D–M) Time series showing epidermal MP-VENUS clones in mp-T370 and associated changes in PIN1-CFP localization.

(D–H) Overview showing two independent clones. Note the gradual increase in expression of both MP and PIN1 within the clones indicating an increase in local

auxin levels compared to neighboring regions (asterisk in G).

(I–M) Magnified view of the dotted rectangle in (D). The asterisk in (I) marks the cell before MP-VENUS induction, corresponding to the future clone.

(N) Longitudinal optical section showing a sub-epidermal polarity response to the epidermal clone.

(O) Cross-section showing lateral PIN1 polarity toward the MP clone in the sub-epidermal layer.

(P) PIN1-CFP convergence in the epidermal cell layer in response to a sub-epidermal MP clone.

(Q) Longitudinal reconstructed section of (P) showing a sub-epidermal MP-VENUS clone.

The arrows indicate the estimated PIN polarity direction within the cells. Scale bars, 30 mm (A and B), 10 mm (D–H and N–Q), 4 mm (I), and 5 mm (J–M). See also

Figures S3 and S4 and Movies S2 and S3.
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and imply that auxin-induced transcriptional targets positively

feed back on their own expression by influencing auxin trans-

port. Because MP triggers gene expression in response to

signaling by transport inhibitor response (TIR)1, which is local-

ized intracellularly [22–24], this result also strongly supports pre-

vious models for phyllotaxis that assume that high levels of intra-

cellular auxin act to polarize PIN1 in neighboring cells [7, 8, 10].

Because several previous studies have suggested a role for

mechanical stresses in orienting cell polarity [10, 25, 26], and

local MP expression most likely alters such stresses by promot-

ingorgangrowth,we investigatedwhether apreviously proposed

model linking intracellular auxin to wall stresses and PIN1 locali-

zation [10] could account for the polarity patterns we observed in

response to local MP expression. This model assumes that intra-

cellular auxin promotes the expression of cell wall enzymes that

loosen cell walls and that cells target their PIN1 protein toward

membranes adjacent to highly stressed walls. Due to the com-

mon tensile load borne by attached, adjacent cell walls, the loos-

ening of one cell wall triggered by auxin is assumed to increase

the tensile stress on the adjacent cell wall, thereby promoting po-

larization of PIN1 in the adjacent cell toward the neighboring cell

with high levels of intracellular auxin [10]. Using a finite element

mechanical model of meristem tissue (see the Supplemental

Experimental Procedures), we assumed that auxin-induced MP

activity triggers cell wall loosening and simulated this loosening

in small patches of cells in different cell layers to determine the

predicted polarities of surrounding cells. We found this model

could recapitulate polarity responses to epidermal MP clones

(Figures S4A and S4B) and sub-epidermal polarity response to

sub-epidermal clones (Figure S4C). In contrast, the predicted

epidermal polarities to sub-epidermal clones did not match ob-

servations (Figure S4D). However, adding low levels of loosening

in the overlying epidermal cells could restore a match to the sim-

ulations (Figure S4E), suggesting that residual auxin response

may exist in non-MP-expressing cells. We tested this prediction

by applying auxin to mp mutant meristems and observed a de-

layed PIN1 expression and limited growth response that could

be inhibited by the TIR1 inhibitor auxinole (Figures S4F–S4M).

These results confirm that residual TIR1-dependent auxin activity

remains in mp mutants and that if this is taken into account, our

results are consistent with a mechanical stress feedback model.

Simultaneous observation of microtubule orientations together

with PIN1 in response to MP clones also revealed correlated

responses consistent with mechanical model predictions [26]

(Figures S4N and S4O; Movie S3).

Sub-epidermal MP Activity Stabilizes Auxin Distribution
Patterns to Underlying Cells
Because MP clones are sufficient to reorient PIN1 polarities

toward the clones in multiple cell layers, we decided to express

MP only in the epidermis to test whether epidermal expression

of MP per se is sufficient to generate periodic patterns. In wild-

type plants expressing MP-YPet under the control of the

MERISTEM LAYER 1 (ML1) promoter, we observed MP-YPet

expression to be restricted to the epidermis but patterned in a

similar way to the wild-type, and it remained auxin responsive

(Figures 4A and 4B). To verify that the pML1 promoter was not

auxin responsive, we checked themeristems of control plants ex-

pressing pML1::2X-CFP-N7 and found that CFP was uniformly
expressed anddid not showan increase in expression upon auxin

application (Figures4Cand4D). Incontrast,many transgenicgen-

eration 2 (T2) mp mutant plants expressing MP in the epidermis

developed fused cotyledons (23%, n = 13; 50%, n = 10) and

leaves (Figures 4E and 4F). Although some of these plants failed

to develop beyond the seedling stage, less severely affected

plants (33%; n = 26, 20) underwent the transition to flowering.

Of 13 such plants, 10 exhibited two elongated PIN1 polarity

convergence and MP expression foci positioned on opposite

sides of the SAM, with two distinct spirals of organ tissue forming

continuous bands leading down the stem (Figures 4G–4I). Other

configurations included a single spiral, a whorled pattern, and a

whorled/spiral intermediate. Time-lapse imaging of plants exhib-

iting the spiral pattern revealed that in contrast to thewild-type sit-

uation, the expression patterns of both PIN1 and MP tended to

shift laterally, alongwith convergent patterns of PIN1polarity (Fig-

ures 4J and 4K). Although the initiation of organ growth correlated

with the onset of highMP expression, this growth continued after

the local maximum of MP and PIN1 expression subsequently

shifted, thereby creating a continuous spiral of organ tissue. Lon-

gitudinal reconstructions of optical sections confirmed that

whereas both PIN1-CFP and MP-YPet were upregulated in

epidermal tissues,bothmarkerswere largelyabsent in cellsbelow

(Figures 4L and 4M). Notably, no evidence of pro-vascular tissue

marked by PIN1 was detected (Figure 4M). Because vascular tis-

sues have been associated with auxin depletion [27], we tested

whether auxin-triggered auxin depletion could act to stabilize

auxin distribution patterns generated by a previously proposed

feedback model for auxin transport consistent with our findings

[28] (see the Supplemental Experimental Procedures). We found

thatwithout negative feedbackonauxin concentrations, theauxin

maxima generated by thismodel could easily shift with respect to

the underlying cells due to saturation of the transport system,

leading to diffusion or ‘‘leakage’’ of auxin laterally [28] (Movie

S4). However, by depleting auxin levels in an auxin-dependent

manner, the locations of auxin maxima can be stabilized (Movie

S4). These findings demonstrate that although MP is sufficient

in a single-cell layer to mediate the formation of separated auxin

maxima (corresponding to the two foci ofMPandPIN1expression

observed at the apex), consistentwith previous studies [29], addi-

tional MP-regulated processes in sub-epidermal tissues such

as auxin depletion must exist that prevent movement of spacing

patterns with respect to the underlying cells.

Although tissue-level cues orienting cell polarity in animals

appear to be patterned independent of their downstream polarity

targets, our data indicate that plants utilize cell polarity to prop-

agate amobile signal that acts within cells to orient the polarity of

neighboring cells such that the signal accumulates locally. Hav-

ing established MP as a central player in this feedback system,

a future focus on MP target genes should ultimately lead to a

molecular understanding of the signaling processes involved

and how these processes are modulated in different plant spe-

cies and tissue contexts to generate morphological diversity.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, two tables, and four movies and can be found with this article on-

line at http://dx.doi.org/10.1016/j.cub.2016.09.044.
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Figure 4. Restriction of MP Activity to the Epidermis Results in Mobile Auxin Maxima

(A and B) pML1::MP-YPet expression (magenta) in wild-type before (A) and 6 hr after auxin treatment (B) (n > 20). The inset in (A) shows a longitudinal optical

section; white arrowheads in (A) point to regions of low MP-YPet expression, as also seen when MP is driven by its own promoter.

(C andD) pML1::2X-CFP-N7 expression (magenta) before (C) and 6 hr after auxin treatment (D) (n = 6). The inset in (C) shows a longitudinal optical section showing

epidermal localization.

(E) Photograph of the mp-T370 mutant expressing pML1::MP-YPet.

(F) Confocal projection of an mp-T370 mutant seedling with fused leaves (white arrowhead), with pML1::MP-YPet (magenta) and pPIN1::PIN1-CFP (green).

(G and H) IM of mp-T370 expressing pML1::MP-YPet; photograph (G) and confocal projection, with pML1::MP-YPet (magenta) and pPIN1::PIN1-CFP

(green) (H).

(I) Magnified view of the dotted rectangle in (H) showing PIN1-CFP forming a convergence pattern. The arrows indicate the estimated PIN1 polarity directions

within the cells.

(J and K) Time series of mp-T370 IMs expressing pML1::MP-YPet and pPIN1::PIN1-CFP before (J) and 12 hr later (K). Note the change in the position

of maximum MP expression (white arrowheads) and PIN1 convergences (yellow arrowheads). The asterisks mark the same cells at 0 hr and at 12 hr time

point.

(L and M) Longitudinal reconstructed optical sections of mp-T370 IM showing pPIN1::PIN1-CFP and pMP::MP-YPet expression (L) and pML1::MP-YPet

(magenta) and pPIN1::PIN1-CFP (M). Arrowheads indicate PIN1-CFP signal in sub-epidermal layers/pro-vasculature (L) or the absence thereof (M).

Scale bars, 30 mm (A and B), 40 mm (C and D), 50 mm (F and H), and 20 mm (I–M). See also Movie S4.
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