156 research outputs found

    Regulation of the renal sympathetic nerves in heart failure

    Get PDF
    Heart failure (HF) is a serious debilitating condition with poor survival rates and an increasing level of prevalence. Heart failure is associated with an increase in renal norepinephrine spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of heart failure has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity has also been recorded in animal models of heart failure. This review will focus on the mechanisms controlling sympathetic nerve activity to the kidney during normal conditions and alterations in these mechanisms during heart failure. In particular the roles of afferent reflexes and central mechanisms will be discussed

    Solar Electric Propulsion Concepts for Human Space Exploration

    Get PDF
    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system

    Social Connection, Relationships and Older Lesbian and Gay People

    Get PDF
    This paper presents data from a small study exploring the impacts of homophobia on the lives of older lesbian and gay Australians. Eleven in-depth interviews were conducted with older lesbians (6) and gay men (5) ranging in age from 65 to 79 years. The study found that participants’ sense of self was shaped by the dominant medical, legal and religious institutions of their youth that defined them as sick, immoral or criminal. Participants described enforced “cure” therapies, being imprisoned, having employment terminated and being disowned and disinherited by family. In this context, intimate relationships and social networks provided refuge where trust was rebuilt and sexuality affirmed. Many created safe spaces for themselves. This equilibrium was threatened with increasing age, disability and the reliance on health and social services. Participants feared a return to institutional control and a need to “straighten up” or hide their sexuality. In response, partners stepped into the role of caregiver, at times beyond their capacity and at a cost to their relationship. The study describes the importance of understanding social connections in the lives of older lesbians and gay men. It highlights the need for inclusive services to ensure that social networks are supported and that health and well-being are promoted

    Extensive core microbiome in drone-captured whale blow supports a framework for health monitoring

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00119-17, doi:10.1128/mSystems.00119-17.The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales (Megaptera novaeangliae), sampled in the Massachusetts coastal waters off Cape Cod (n = 17) and coastal waters around Vancouver Island (n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales.Funding for sample analysis was provided through a grant to A.A., M.J.M., and J.W.D. from the Ocean Life Institute of the Woods Hole Oceanographic Institution. Attachments for collection surfaces on the hexacopter were constructed with funding support from NOAA’s UAS Program

    Deterministic Chaos in Blood Pressure Signals During Different Physiological Conditions

    Get PDF
    Several coupled and nonlinear controlling mechanisms are involved in the regulation of blood pressure. The possible presence of chaos in physiological signals has been the subject of some research. In this study, blood pressure signals were analysed using a range of nonlinear time series analysis techniques. Individual effectors of blood pressure were either experimentally removed or enhanced, so that the controlling mechanisms that are responsible for the chaotic nature of the signals may be identified by chaotic analysis of the signals. The level of chaos varied across the different experimental conditions, showing a distinct decrease from control conditions to all other experimental conditions

    Deterministic Chaos in Blood Pressure Signals During Different Physiological Conditions

    Get PDF
    Several coupled and nonlinear controlling mechanisms are involved in the regulation of blood pressure. The possible presence of chaos in physiological signals has been the subject of some research. In this study, blood pressure signals were analysed using a range of nonlinear time series analysis techniques. Individual effectors of blood pressure were either experimentally removed or enhanced, so that the controlling mechanisms that are responsible for the chaotic nature of the signals may be identified by chaotic analysis of the signals. The level of chaos varied across the different experimental conditions, showing a distinct decrease from control conditions to all other experimental conditions

    Dynamic baroreflex control of blood pressure: influence of the heart vs. peripheral resistance

    Get PDF
    The aim in the present experiments was to assess the dynamic baroreflex control of blood pressure, to develop an accurate mathematical model that represented this relationship, and to assess the role of dynamic changes in heart rate and stroke volume in giving rise to components of this response. Patterned electrical stimulation [pseudo-random binary sequence (PRBS)] was applied to the aortic depressor nerve (ADN) to produce changes in blood pressure under open-loop conditions in anesthetized rabbits. The stimulus provided constant power over the frequency range 0–0.5 Hz and revealed that the composite systems represented by the central nervous system, sympathetic activity, and vascular resistance responded as a second-order low-pass filter (corner frequency ≈0.047 Hz) with a time delay (1.01 s). The gain between ADN and mean arterial pressure was reasonably constant before the corner frequency and then decreased with increasing frequency of stimulus. Although the heart rate was altered in response to the PRBS stimuli, we found that removal of the heart's ability to contribute to blood pressure variability by vagotomy and β1-receptor blockade did not significantly alter the frequency response. We conclude that the contribution of the heart to the dynamic regulation of blood pressure is negligible in the rabbit. The consequences of this finding are examined with respect to low-frequency oscillations in blood pressure

    Repeat controlled human malaria infection of healthy UK adults with blood-stage plasmodium falciparum:Safety and parasite growth dynamics

    Get PDF
    In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03906474, NCT02927145
    corecore