2,261 research outputs found

    The Genetic Basis of Cognitive Impairment and Dementia in Parkinson's Disease.

    Get PDF
    Cognitive dysfunction is a common feature of Parkinson's disease (PD) with mild cognitive impairment affecting around a quarter of patients in the early stages of their disease, and approximately half developing dementia by 10 years from diagnosis. However, the pattern of cognitive impairments and their speed of evolution vary markedly between individuals. While some of this variability may relate to extrinsic factors and comorbidities, inherited genetic heterogeneity is also known to play an important role. A number of common genetic variants have been identified, which contribute to cognitive function in PD, including variants in catechol-O-methyltransferase, microtubule-associated protein tau, and apolipoprotein E. Furthermore, rarer mutations in glucocerebrosidase and α-synuclein and are strongly associated with dementia risk in PD. This review explores the functional impact of these variants on cognition in PD and discusses how such genotype-phenotype associations provide a window into the mechanistic basis of cognitive heterogeneity in this disorder. This has consequent implications for the development of much more targeted therapeutic strategies for cognitive symptoms in PD.This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fpsyt.2016.0008

    Mild cognitive impairment and Parkinson's disease--something to remember.

    Get PDF
    Cognitive impairment is common in Parkinson's disease (PD), and many patients will eventually develop a dementia, which has a devastating impact on the patient and their family. As such, there has been much interest in identifying a prodromal state to inform prognosis and facilitate earlier management, similar to the concept of 'MCI' in the Alzheimer's field. However, grouping the early cognitive deficits of PD together as 'PD-MCI' may not be the best way forward as it implies a single aetiological basis with one clinical consequence. In this review, we argue that cognitive deficits in PD arise from a number of different pathological pathways, only some of which herald a dementing process. This has important implications both for treatment of individual patients, and for the design of future disease-modifying therapy trials.This is the final version of the article. It first appeared from IOS Press via http://dx.doi.org/10.3233/JPD-14042

    Targeting Aged Astrocytes May Be a New Therapeutic Strategy in Parkinson's Disease.

    Get PDF
    Commentary on: Chinta, S. J. Woods, G. Demaria M. et al. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson’s Disease. Cell Reports 2018; 22: 930-940. Parkinson’s disease (PD) becomes increasingly common with advancing age. It is therefore possible that cell senescence contributes to its pathophysiology. In a recent paper in Cell Reports, Chinta et al1 have shown that astrocytes exhibiting an age-associated (senescent) phenotype are toxic to neurons in vitro, and their removal is associated with better outcomes in a mouse model of PD. This finding may be relevant to other neurodegenerative conditions such as Alzheimer’s and Amyotrophic Lateral Sclerosis (ALS) in which cellular senescence is also implicated.2CHWG holds a MRC Clinician Scientist fellowship, and receives grants from the Rosetrees Trust, the Evelyn Trust and Addenbrooke’s Charitable Trust. She is also supported by the NIHR Cambridge Biomedical Research Centre. KMS holds a fellowship from the Wellcome Trust and her work is also supported by the NIHR Cambridge Biomedical Research Centr

    The pathogenesis of Parkinson's disease

    Get PDF
    Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition

    The motor and cognitive features of Parkinson's disease in patients with concurrent Gaucher disease over 2 years: a case series.

    Get PDF
    We report the cognitive features and progression of Parkinson's disease (PD) in five patients with concurrent Gaucher disease. The patients presented at an earlier age than patients with sporadic PD, as previously noted by others; but in contrast to many previous reports, our patients followed a variable clinical course. While two patients developed early cognitive deficits and dementia, three others remained cognitively intact over the follow-up period. Thus, in this small case series, PD in the context of GD more closely resembles idiopathic PD in terms of its clinical heterogeneity in contrast to PD associated with GBA heterozygote mutations.NIHR BRC and NIHR Senior Investigator, Rosetrees fundin

    Cerebrospinal Fluid Cytokines and Neurodegeneration-Associated Proteins in Parkinson's Disease.

    Get PDF
    INTRODUCTION: Immune markers are altered in Parkinson's disease (PD), but relationships between cerebrospinal fluid (CSF) and plasma cytokines and associations with neurodegeneration-associated proteins remain unclear. METHODS: CSF and plasma samples and demographic/clinical measures were obtained from 35 PD patients. CSF samples were analyzed for cytokines (together with plasma) and for α-synuclein, amyloid β(1-42) peptide, total tau, and phospho(Thr231)-tau. RESULTS: There were no CSF-plasma cytokine correlations. Interleukin (IL)-8 was higher and interferon-γ, IL-10, and tumor necrosis factor-α were lower in CSF versus plasma. In CSF, total tau correlated positively with IL-8 and IL-1β, whereas α-synuclein correlated positively with amyloid β(1-42) and negatively with semantic fluency (a known marker of PD dementia risk). DISCUSSION: CSF and peripheral cytokine profiles in PD are not closely related. Associations between CSF IL-8 and IL-1β and tau suggest that CSF inflammatory changes may relate to tau pathology within PD. CSF α-synuclein/amyloid β may reflect the risk of developing PD dementia. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.Funding for this work was provided by the Rosetrees Trust (M369-F1), Addenbrooke’s Charitable Trust (PF15/CWG) and the NIHR Cambridge Biomedical Research Centre Dementia and Neurodegeneration Theme (146281). RSW was supported by a Fellowship from Addenbrooke’s Charitable Trust (RG77199). SFM was supported by the Transeuro EU FP7 grant (242003) and is now an NIHR Academic Clinical Fellow (ACF-2015-23-501). DPB is supported by a Wellcome Trust Clinical Research Career Development Fellowship. RAB is an NIHR Senior Investigator (NF-SI-0616-10011) and is supported by the Wellcome Trust-MRC Cambridge Stem Cell Institute. CHWG holds a RCUK/UKRI Research Innovation Fellowship awarded by the Medical Research Council (MR/R007446/1) and receives support from the Cambridge Centre for Parkinson-Plus

    Neurodegenerative Disease and the NLRP3 Inflammasome.

    Get PDF
    The prevalence of neurodegenerative disease has increased significantly in recent years, and with a rapidly aging global population, this trend is expected to continue. These diseases are characterised by a progressive neuronal loss in the brain or peripheral nervous system, and generally involve protein aggregation, as well as metabolic abnormalities and immune dysregulation. Although the vast majority of neurodegeneration is idiopathic, there are many known genetic and environmental triggers. In the past decade, research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease or is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, a crucial component of the innate immune system, is usually activated in response to infection or tissue damage. Dysregulation of the NLRP3 inflammasome has been implicated in the progression of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. This review aims to summarise current literature on the role of the NLRP3 inflammasome in the pathogenesis of neurodegenerative diseases, and recent work investigating NLRP3 inflammasome inhibition as a potential future therapy

    T lymphocyte senescence is attenuated in Parkinson's disease.

    Get PDF
    BackgroundImmune involvement is well-described in Parkinson's disease (PD), including an adaptive T lymphocyte response. Given the increasing prevalence of Parkinson's disease in older age, age-related dysregulation of T lymphocytes may be relevant in this disorder, and we have previously observed changes in age-associated CD8+ T cell subsets in mid-stage PD. This study aimed to further characterise T cell immunosenescence in newly diagnosed PD patients, including shifts in CD4+ and CD8+ subpopulations, and changes in markers of cellular ageing in CD8+ T lymphocytes.MethodsPeripheral blood mononuclear cells were extracted from the blood of 61 newly diagnosed PD patients and 63 age- and sex-matched controls. Flow cytometric analysis was used for immunophenotyping of CD8+ and CD4+ lymphocyte subsets, and analysis of recent thymic emigrant cells. Telomere length within CD8+ T lymphocytes was assessed, as well as the expression of the telomerase reverse transcriptase enzyme (hTERT), and the cell-ageing markers p16INK4a and p21CIP1/Waf1.ResultsThe number of CD8+ TEMRA T cells was found to be significantly reduced in PD patients compared to controls. The expression of p16INK4a in CD8+ lymphocytes was also lower in patients versus controls. Chronic latent CMV infection was associated with increased senescent CD8+ lymphocytes in healthy controls, but this shift was less apparent in PD patients.ConclusionsTaken together, our data demonstrate a reduction in CD8+ T cell replicative senescence which is present at the earliest stages of Parkinson's disease
    • …
    corecore