42 research outputs found

    Non-alcoholic fatty liver disease, and the underlying altered fatty acid metabolism, reveals brain hypoperfusion and contributes to the cognitive decline in APP/PS1 mice

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfalpha, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma beta40- and beta42-amyloid levels and altered hepatic but not brain expression of genes involved in beta-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD

    Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids

    Get PDF
    Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP). We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA; 22:6n3) and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6) in mitochondrial membranes is associated with a greater Ca2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6). Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs

    A high omega-3 fatty acid diet rapidly changes the lipid composition of cardiac tissue and results in cardio-protection

    No full text
    The present study was designed to ascertain the effects of 3 diets with different omega-3/6 fatty acid ratios on infarct size and the modifications that these diets induce in the lipid composition of cardiac tissue. Sprague-Dawley rats were fed omega-3/6 fatty acid diets with 1:1, 1:5 or 1:20 ratios for at least 10 days, followed by occlusion of the left anterior descending artery for 40 min and 24 h of reperfusion. Infarct size was significantly smaller in the 1:1 group compared to the other groups. Significantly higher concentrations of the omega-3 fatty acids eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid were found in the 1:1 and other groups. Omega-6 polyunsaturated fatty acid levels were similar between groups, although they were higher in the 1:5 and 1:20 groups compared to the 1:1 group. Margaric acid concentrations were higher in the 1:1 group than in both other groups. Docosahexaenoic acid levels in cardiac tissue and infarct size were significantly correlated with no other significant links being apparent. In conclusion, the present study indicated that a 1:1 omega-3/6 fatty acid ratio protected against ischemia and was associated with increased omega-3 fatty acid composition of cardiac tissue.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARÎł and Fatty Acid Uptake.

    No full text
    Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARÎł expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARÎł target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARÎł. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARÎł transcriptional activity by AA leading to increased fatty acid uptake by the liver

    Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients

    No full text
    Despite advances in our knowledge and attempts to improve therapies, β-thalassemia remains a prevalent disorder with increased risk for the development of cardiomyopathy. Using an untargeted discovery-based lipidomic workflow, we uncovered that transfusion-dependent thalassemia (TDT) patients had a unique circulating lipidomic signature consisting of 387 lipid features, allowing their significant discrimination from healthy controls (Q-value < 0.01). In particular, TDT patients had elevated triacylglycerols and long-chain acylcarnitines, albeit lower ether phospholipids or plasmalogens, sphingomyelins, and cholesterol esters, reminiscent of that previously characterized in cardiometabolic diseases resulting from mitochondrial and peroxisomal dysfunction. Discriminating lipid (sub)classes correlated differentially with clinical parameters, reflecting blood (ether phospholipids) and iron (cholesterol ester) status or heart function (triacylglycerols). We also tested 15 potential serum biomarkers related to cardiometabolic disease and found that both lipocalin-2 and, for the first time, endocan-1 levels were significantly elevated in TDT patients and showed a strong correlation with blood parameters and three ether diacylglycerophosphatidylcholine species. In conclusion, this study identifies new characteristics of TDT patients which may have relevance in developing biomarkers and therapeutics

    Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer

    No full text
    De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression

    Fish oil supplementation alleviates metabolic and anxiodepressive effects of diet-induced obesity and associated changes in brain lipid composition in mice

    No full text
    Objective: Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear. Methods: Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage (“supplementation”) of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light–dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography–mass spectrometry and real-time PCR, respectively. Results: Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO. Conclusions: Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity

    Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    No full text
    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells suggest that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with (13)C-labeled leucine ascertained its metabolism to ketone bodies (KBs), which had similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of the glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insight into the establishment of insulin resistance in the heart

    Analysis of genes involved in β-oxidation in the liver of H-apoD Tg mice.

    No full text
    <p><b>A</b>- Western blot analysis of PPARα protein expression. The graph represents the level of PPARα protein expression standardized by amidoblack staining. A representative gel is presented. Semi-quantitative RT-PCR analysis of PGC-1α (<b>B</b>) and CPT1 (<b>C</b>) expression in liver of WT and H-apoD Tg mice. PGC1α and CPT1 gene expression was normalized by HPRT. For each graph, the H-apoD Tg values were normalized by the WT values and are the means ± SD of 4 mice per group. *P<0.05 and **P<0.01 <i>vs</i> WT mice.</p

    PPARÎł transcriptional activity in presence of AA and/or apoD.

    No full text
    <p><b>A-</b> HepG2 cells were either non transfected (NT) or transfected with a myc-Tag apoD-cDNA or empty vector (EV) construct and incubated with BSA or arachidonic acid (AA). The level of H-apoD expression was evaluated by Western blot using a specific H-apoD antibody. <b>B</b>- HepG2 cells were transfected with UAS-Luc, GAL4-PPARγ, β-galactosidase and with either an empty vector or a myc-Tag apoD-cDNA construct. After transfection, cells were treated with 7 μM AA for 4h. Luciferase activity represents data normalized by β-galactosidase activity. The data represent the mean ± SD (n = 3). *P<0.05 and **P<0.01 <i>vs</i> the non-stimulated control without apoD. The gel presented below showed the expression of apoD in transfected cells using a myc antibody.</p
    corecore