8 research outputs found

    Cytoplasmatic domain of Na,K-ATPase α-subunit is responsible for the aggregation of the enzyme in proteoliposomes

    Get PDF
    We studied the thermal dependence of amide I′ infrared absorption and fluorescence emission of Trp residues in the Na,K-ATPase of rabbit kidney. We studied the whole enzyme solubilized with detergent, the whole enzyme reconstituted in proteoliposomes and the protein fraction that remained in the lipid membrane after the trypsin digestion of the proteoliposomes. Cooperative unfolding and aggregation with increasing temperature were observed in the whole protein, whether solubilized or reconstituted, but not in the fraction remaining after trypsinization. The protein influenced the physical state of the lipid, decreasing the temperature of the gel to liquid-crystalline phase transition and the degree of cooperativity. This study provides new information for the understanding of the processes controlling the association mechanisms that are important for enzyme function in natural membranes. © 2009 Elsevier B.V. All rights reserved.Fil: Rigos, Carolina Fortes. Universidade de Sao Paulo; BrasilFil: de Lima Santos, Hérica. Universidade Federal de Sao Joao Del-rei; BrasilFil: Yoneda, Juliana Sakamoto. Universidade de Sao Paulo; BrasilFil: Montich, Guillermo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Maggio, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Ciancaglini, Pietro. Universidade de Sao Paulo; Brasi

    Mechanism of association of Na,K-ATPase subunits studied by chemical and physical agents: comparison between solubilized and liposome reconstituted enzyme.

    No full text
    A Na,K-ATPase é uma proteína encontrada na membrana plasmática de praticamente todas as células animais, que utiliza a energia derivada da hidrólise do ATP para transportar 3 íons Na+ e 2 íons K+. É composta por duas subunidades denominadas e . Um aspecto que ainda gera controvérsias se refere à sua forma de associação nativa e funcional como um protômero ou ainda na forma de oligômeros ()2 ou ()4. Uma forma de estudar essa enzima é pela sua solubilização da membrana, e posteriormente reconstituição em lipossomos de DPPC:DPPE. A caracterização cinética e estrutural desse sistema mostra que a enzima se apresenta na forma oligomérica ()2. O objetivo desse trabalho foi avaliar os mecanismos de dissociação e de desnaturação da Na,K-ATPase solubilizada bem como da reconstituída em lipossomos de DPPC:DPPE, por agentes físicos (temperatura) e químicos (relação proteína:detergente, uso de agentes caotrópicos como a guanidina e mudanças de pH), para interpretar as suas formas de associação e regulação. Para isso, foram realizados experimentos de dicroísmo circular (CD), calorimetria (DSC), infravermelho (FTIR), fluorescência de emissão do triptofano, tensão superficial, elasticidade, atividade catalítica (ATPase e pNPPase). Os estudos de CD em função da variação de temperatura mostraram que ocorre uma transição na curva de elipticidade (222 nm) a 43,7°C para a enzima solubilizada e a 42,0°C para a enzima reconstituída em lipossomos. Estas transições foram também encontradas pela técnica de FTIR. Os experimentos por DSC para a enzima solubilizada revelaram a presença de três picos em 54,7; 64,7 e 67,8°C. Já para a enzima reconstituída observam-se transições em menores temperaturas entre 30 a 40ºC (referentes aos lipídios) e ainda a preservação do pico de transição para proteína em 68,0°C. A análise de fluorescência de triptofano para ambas formas de enzima revelou deslocamentos de pico máximo de emissão a partir de 60°C. Já a presença de guanidina mostrou dois pontos de transição em 3 e 5 mol.L-1 para a Na,K-ATPase solubilizada. O efeito de diferentes meios tamponantes revelou que a enzima apresenta maiores conteúdos em -hélice em pH 7,5, concomitante com um aumento na intensidade de emissão de fluorescência do triptofano na faixa de pH de 5,0 a 8,5. Analisando conjuntamente todas as técnicas podemos propor um mecanismo de dissociação/desnaturação da enzima em função da temperatura. Primeiramente a enzima passa do seu estado oligomérico ()2 e forma protômeros . A atividade ATPase é perdida completamente (acima de 60ºC) quando as subunidades são completamente separadas, ocorrendo então uma agregação das subunidades , através dos domínios citoplasmáticos. Finalmente, a análise da enzima em diferentes proporções de proteína:detergente revela que a Na,K-ATPase, na presença de concentrações abaixo da CMC, se encontra na forma ()2 ou ainda ()4 (dependendo da concentração de proteína). Já para concentrações acima da CMC ocorre a separação das subunidades e consequente perda de atividade catalítica. Devido à dependência da atividade ATPase com seu estado conformacional e seu estado de oligomerização, este estudo realizado por técnicas bioquímicas e biofísicas, resulta em novas informações acerca da compreensão dos mecanismos que controlam o processo de associação, o qual é importante para a função da enzima na membrana natural.Na,K-ATPase is a protein found in the plasmatic membrane of almost all animal cells and it uses the energy from ATP hydrolysis to transport 3 Na+ ions and 2 K+ ions. It is formed by subunits called and. One controversial aspect refers to its native and functional association form as a protomer or still in ()2 or ()4 oligomers form. One way to study this protein in our laboratory is by its solubilization from membrane, and later reconstitution in liposome from DPPC:DPPE. The kinetic and structural characterization fo this system shows that the enzyme presents itself in the oligomeric form ()2. The aim of this work was to evaluate the dissociation and denaturation mechanisms of the solubilized NA,K-ATPase as well as the one reconstituted in DPPC:DPPE liposome, by physic (temperature) and chemical agents (relation protein:detergent, use of chaotropic agents as Guanidine chloride, or still by the pH changes, to interpret its association and regulation forms. To that end, experiments of circular dichroism (CD), calorimetry (DSC), superficial tension, elasticity , catalytic activity (ATPase an pNPPase) were done. The CD studies in function of temperature variation have shown that a transition occurs in the ellipticity curve (222 nm) at 43.7ºC for the solubilized enzyme and at 42.0ºC for the enzyme reconstituted in liposome. These transitions were also found by the FTIR technique. The experiments by DSC for the solubilized enzyme have shown the presence of three peaks at 54.7ºC, 64.7ºC and 67.8ºC. As for the reconstituted enzyme, transitions in lower temperatures between 30ºC and 40ºC (concerning the lipids) and also the preservation of the transition peak for the protein at 68.0ºC were observed. The Tryptophane fluorescence analysis for both enzyme forms has revealed emission maximum peak shifts starting from 60ºC. The Guaniddine presence has shown two transition points at 3 and 5 mol.L-1 for the solubilized Na,K-ATPase. The effect of different buffer media has shown that the enzyme presents higher contents in -helix at pH 7.5, concomitant with an increase of the intensity of tryptophane fluorescence emission in the pH range of 5.0 to 8.5. Analyzing all the techniques together we can propose a dissociation/denaturation mechanism in function of the temperature. First, the enzyme goes from its oligomeric ()2 state and forms protomers. The ATPase activity é totally lost ( over 60ºC) when the subunits are completely separated, when an subunits aggregation then occurs, through the cytoplasmatic domains. Finally, the analysis of the enzyme in different proportions of protein:detergent reveals that the NA,K-ATPase, in the presence of concentrations bellow CMS, is in the ()2 or yet in the ()4 form (Depending on protein concentration). Now for concentrations above CMS, the separation of the subunits occurs and consequent catalytic activity loss. Due to the ATPase activity dependence on its conformational form and oligomerization state, this study done with biophysical and biochemistry techniques, results in new information on the comprehension of the mechanisms that control the association processes, which is important to the enzyme function in the natural membrane

    Mechanism of association of Na,K-ATPase subunits studied by chemical and physical agents: comparison between solubilized and liposome reconstituted enzyme.

    No full text
    A Na,K-ATPase é uma proteína encontrada na membrana plasmática de praticamente todas as células animais, que utiliza a energia derivada da hidrólise do ATP para transportar 3 íons Na+ e 2 íons K+. É composta por duas subunidades denominadas e . Um aspecto que ainda gera controvérsias se refere à sua forma de associação nativa e funcional como um protômero ou ainda na forma de oligômeros ()2 ou ()4. Uma forma de estudar essa enzima é pela sua solubilização da membrana, e posteriormente reconstituição em lipossomos de DPPC:DPPE. A caracterização cinética e estrutural desse sistema mostra que a enzima se apresenta na forma oligomérica ()2. O objetivo desse trabalho foi avaliar os mecanismos de dissociação e de desnaturação da Na,K-ATPase solubilizada bem como da reconstituída em lipossomos de DPPC:DPPE, por agentes físicos (temperatura) e químicos (relação proteína:detergente, uso de agentes caotrópicos como a guanidina e mudanças de pH), para interpretar as suas formas de associação e regulação. Para isso, foram realizados experimentos de dicroísmo circular (CD), calorimetria (DSC), infravermelho (FTIR), fluorescência de emissão do triptofano, tensão superficial, elasticidade, atividade catalítica (ATPase e pNPPase). Os estudos de CD em função da variação de temperatura mostraram que ocorre uma transição na curva de elipticidade (222 nm) a 43,7°C para a enzima solubilizada e a 42,0°C para a enzima reconstituída em lipossomos. Estas transições foram também encontradas pela técnica de FTIR. Os experimentos por DSC para a enzima solubilizada revelaram a presença de três picos em 54,7; 64,7 e 67,8°C. Já para a enzima reconstituída observam-se transições em menores temperaturas entre 30 a 40ºC (referentes aos lipídios) e ainda a preservação do pico de transição para proteína em 68,0°C. A análise de fluorescência de triptofano para ambas formas de enzima revelou deslocamentos de pico máximo de emissão a partir de 60°C. Já a presença de guanidina mostrou dois pontos de transição em 3 e 5 mol.L-1 para a Na,K-ATPase solubilizada. O efeito de diferentes meios tamponantes revelou que a enzima apresenta maiores conteúdos em -hélice em pH 7,5, concomitante com um aumento na intensidade de emissão de fluorescência do triptofano na faixa de pH de 5,0 a 8,5. Analisando conjuntamente todas as técnicas podemos propor um mecanismo de dissociação/desnaturação da enzima em função da temperatura. Primeiramente a enzima passa do seu estado oligomérico ()2 e forma protômeros . A atividade ATPase é perdida completamente (acima de 60ºC) quando as subunidades são completamente separadas, ocorrendo então uma agregação das subunidades , através dos domínios citoplasmáticos. Finalmente, a análise da enzima em diferentes proporções de proteína:detergente revela que a Na,K-ATPase, na presença de concentrações abaixo da CMC, se encontra na forma ()2 ou ainda ()4 (dependendo da concentração de proteína). Já para concentrações acima da CMC ocorre a separação das subunidades e consequente perda de atividade catalítica. Devido à dependência da atividade ATPase com seu estado conformacional e seu estado de oligomerização, este estudo realizado por técnicas bioquímicas e biofísicas, resulta em novas informações acerca da compreensão dos mecanismos que controlam o processo de associação, o qual é importante para a função da enzima na membrana natural.Na,K-ATPase is a protein found in the plasmatic membrane of almost all animal cells and it uses the energy from ATP hydrolysis to transport 3 Na+ ions and 2 K+ ions. It is formed by subunits called and. One controversial aspect refers to its native and functional association form as a protomer or still in ()2 or ()4 oligomers form. One way to study this protein in our laboratory is by its solubilization from membrane, and later reconstitution in liposome from DPPC:DPPE. The kinetic and structural characterization fo this system shows that the enzyme presents itself in the oligomeric form ()2. The aim of this work was to evaluate the dissociation and denaturation mechanisms of the solubilized NA,K-ATPase as well as the one reconstituted in DPPC:DPPE liposome, by physic (temperature) and chemical agents (relation protein:detergent, use of chaotropic agents as Guanidine chloride, or still by the pH changes, to interpret its association and regulation forms. To that end, experiments of circular dichroism (CD), calorimetry (DSC), superficial tension, elasticity , catalytic activity (ATPase an pNPPase) were done. The CD studies in function of temperature variation have shown that a transition occurs in the ellipticity curve (222 nm) at 43.7ºC for the solubilized enzyme and at 42.0ºC for the enzyme reconstituted in liposome. These transitions were also found by the FTIR technique. The experiments by DSC for the solubilized enzyme have shown the presence of three peaks at 54.7ºC, 64.7ºC and 67.8ºC. As for the reconstituted enzyme, transitions in lower temperatures between 30ºC and 40ºC (concerning the lipids) and also the preservation of the transition peak for the protein at 68.0ºC were observed. The Tryptophane fluorescence analysis for both enzyme forms has revealed emission maximum peak shifts starting from 60ºC. The Guaniddine presence has shown two transition points at 3 and 5 mol.L-1 for the solubilized Na,K-ATPase. The effect of different buffer media has shown that the enzyme presents higher contents in -helix at pH 7.5, concomitant with an increase of the intensity of tryptophane fluorescence emission in the pH range of 5.0 to 8.5. Analyzing all the techniques together we can propose a dissociation/denaturation mechanism in function of the temperature. First, the enzyme goes from its oligomeric ()2 state and forms protomers. The ATPase activity é totally lost ( over 60ºC) when the subunits are completely separated, when an subunits aggregation then occurs, through the cytoplasmatic domains. Finally, the analysis of the enzyme in different proportions of protein:detergent reveals that the NA,K-ATPase, in the presence of concentrations bellow CMS, is in the ()2 or yet in the ()4 form (Depending on protein concentration). Now for concentrations above CMS, the separation of the subunits occurs and consequent catalytic activity loss. Due to the ATPase activity dependence on its conformational form and oligomerization state, this study done with biophysical and biochemistry techniques, results in new information on the comprehension of the mechanisms that control the association processes, which is important to the enzyme function in the natural membrane

    The association of Na,K-ATPase subunits studied by circular dichroism, surface tension and dilatational elasticity

    No full text
    Different stoichiometries are observed between alpha and beta subunits of Na,K-ATPase that depend on the method employed to solubilize and purify the enzyme. It is not known whether this variability is due to loss of protein-protein association, or is a result of the replacement of essential phospholipids by detergent molecules. With the aim of understanding the effect of enzyme/surfactant ratio on both the catalytic activity and the enzyme structure, we have investigated the bulk and surface properties of the enzyme. The circular dichroism (CD) spectra, surface tension and dilatational surface elasticity results were compared with the residual ATPase activity of the Na,K-ATPase in different surfactant and protein concentrations. Na,K-ATPase in the (alpha beta)(2) form dissociated to the alpha beta form on dilution, and associated to the (alpha beta)(4) form when concentrated. These different stoichiometries have similar ATPase activities and are in equilibrium at C(12)E(8) concentrations below the CIVIC (0.053 mg mL(-1)). At detergent concentrations above the CIVIC the ATPase activity of all forms was abolished, which is concomitant with the dissociation of the a and subunits. (C) 2008 Elsevier Inc. All rights reserved.FAPESPCNPqCAPE

    The association of Na,K-ATPase subunits studied by circular dichroism, surface tension and dilatational elasticity

    No full text
    Different stoichiometries are observed between alpha and beta subunits of Na,K-ATPase that depend on the method employed to solubilize and purify the enzyme. It is not known whether this variability is due to loss of protein-protein association, or is a result of the replacement of essential phospholipids by detergent molecules. With the aim of understanding the effect of enzyme/surfactant ratio on both the catalytic activity and the enzyme structure, we have investigated the bulk and surface properties of the enzyme. The circular dichroism (CD) spectra, surface tension and dilatational surface elasticity results were compared with the residual ATPase activity of the Na,K-ATPase in different surfactant and protein concentrations. Na,K-ATPase in the (alpha beta)(2) form dissociated to the alpha beta form on dilution, and associated to the (alpha beta)(4) form when concentrated. These different stoichiometries have similar ATPase activities and are in equilibrium at C(12)E(8) concentrations below the CIVIC (0.053 mg mL(-1)). At detergent concentrations above the CIVIC the ATPase activity of all forms was abolished, which is concomitant with the dissociation of the a and subunits. (C) 2008 Elsevier Inc. All rights reserved.FAPESPCNPqCAPE

    Unraveling the Na,K-ATPase alpha(4) Subunit Assembling Induced by Large Amounts of C(12)E(8) by Means of Small-Angle X-ray Scattering

    No full text
    In the current work, we studied the effect of the nonionic detergent dodecyloctaethyleneglycol, C(12)E(8), on the structure and oligomeric form of the Na,K-ATPase membrane enzyme (sodium-potassium pump) in aqueous suspension, by means of small-angle X-ray scattering (SAXS). Samples composed of 2 mg/mL of Na,K-ATPase, extracted from rabbit kidney medulla, in the presence of a small amount of C(12)E(8) (0.005 mg/mL) and in larger concentrations ranging from 2.7 to 27 mg/mL did not present catalytic activity. Under this condition, an oligomerization of the alpha subunits is expected. SAXS data were analyzed by means of a global fitting procedure supposing that the scattering is due to two independent contributions: one coming from the enzyme and the other one from C(12)E(8) micelles. In the small detergent content (0.005 mg/mL), the SAXS results evidenced that Na,K-ATPase is associated into aggregates larger than (alpha beta)(2) form. When 2.7 mg/mL of C(12)E(8) is added, the data analysis revealed the presence of alpha(4) aggregates in the solution and some free micelles. Increasing the detergent amount up to 27 mg/mL does not disturb the alpha(4) aggregate: just more micelles of the same size and shape are proportionally formed in solution. We believe that our results shed light on a better understanding of how nonionic detergents induce subunit dissociation and reassembling to minimize the exposure of hydrophobic residues to the aqueous solvent.FAPESPCAPES (Nanobitec-Brasil)CNPqCAPE
    corecore