51 research outputs found

    Superhumps in V348 Pup

    Get PDF
    The eclipsing novalike cataclysmic variable star V348 Pup exhibits a persistent luminosity modulation with a period 6 per cent longer than its 2.44 hour orbital-period (Porb). This has been interpreted as a `positive superhump' resulting from a slowly precessing non-axisymmetric accretion disc gravitationally interacting with the secondary. We find a clear modulation of mid-eclipse times on the superhump period, which agrees well with the predictions of a simple precessing eccentric disc model. Our modelling shows that the disc light centre is on the far side of the disc from the donor star when the superhump reaches maximum light. This phasing suggests a link between superhumps in V348 Pup and late superhumps in SU UMa systems. Modelling of the full lightcurve and maximum entropy eclipse mapping both show that the disc emission is concentrated closer to the white dwarf at superhump maximum than at superhump minimum. We detect additional signals consistent with the beat periods between the implied disc precession period and both (1/2)Porb and (1/3)Porb.Comment: 13 pages, 13 figures, accepted for publication in MNRA

    SPH simulations of irradiation-driven warped accretion discs and the long periods in X-ray binaries

    Full text link
    We present three dimensional smoothed particle hydrodynamics (SPH) calculations of irradiation-driven warping of accretion discs. Initially unwarped planar discs are unstable to the radiation reaction when the disc is illuminated by a central radiation source. The disc warps and tilts and precesses slowly in a retrograde direction; its shape continuously flexes in response to the changing orientation of the Roche potential. We simulate ten systems: eight X-ray binaries, one cataclysmic variable (CV), and a `generic' low mass X-ray binary (LMXB). We adopt system parameters from observations and tune a single parameter: our model X-ray luminosity (L∗L_{*}) to reproduce the observed or inferred super-orbital periods. Without exception, across a wide range of parameter space, we find an astonishingly good match between the observed LXL_{X} and the model L∗L_{*}. We conclude irradiation-driven warping is the mechanism underlying the long periods in X-ray binaries. Our Her X-1 simulation simultaneously reproduces the observed LXL_{X}, the "main-" and "short-high" X-ray states and the orbital inclination. Our simulations of SS 433 give a maximum warp angle of 18.6∘18.6^{\circ}, a good match to the cone traced by the jets, but this angle is reached only in the outer disc. In all cases, the overall disc tilt is less than \degrees{13} and the maximum disc warp is less than and or equal to \degrees{21}.Comment: 17 pages, 14 figures, shorter abstract (24 lines limit

    Doppler Tomography of Dwarf Nova IY UMa during Quiescence

    Full text link
    Quiescent Doppler tomography of the newly discovered deeply-eclipsing SU UMa system IY UMa reveals properties of the region where the accretion stream from the donor impacts the edge of the disc. A very strong bright spot is produced and the Keplerian disc emission in the impact region is disrupted or obscured. The differing properties of Halpha, Hbeta and He I emission will allow physical parameters of the converging flow region to be studied.Comment: 6 pages, 5 figures. To appear in Proceedings of Astro-Tomography Workshop, Brussels, July 2000, Eds. H. Boffin, D. Steeghs, Springer-Verlag Lecture Notes in Physic

    Superhumps in Low-Mass X-Ray Binaries

    Full text link
    We propose a mechanism for the superhump modulations observed in optical photometry of at least two black hole X-ray transients (SXTs). As in extreme mass-ratio cataclysmic variables (CVs), superhumps are assumed to result from the presence of the 3:1 orbital resonance in the accretion disc. This causes the disc to become non-axisymmetric and precess. However the mechanism for superhump luminosity variations in low mass X-ray binaries (LMXBs) must differ from that in CVs, where it is attributed to a tidally-driven modulation of the disc's viscous dissipation, varying on the beat between the orbital and disc precession period. By contrast in LMXBs, tidal dissipation in the outer accretion disc is negligible: the optical emission is overwhelming dominated by reprocessing of intercepted central X-rays. Thus a different origin for the superhump modulation is required. Recent observations and numerical simulations indicate that in an extreme mass-ratio system the disc area changes on the superhump period. We deduce that the superhumps observed in SXTs arise from a modulation of the reprocessed flux by the changing area. Therefore, unlike the situation in CVs, where the superhump amplitude is inclination-independent, superhumps should be best seen in low-inclination LMXBs, whereas an orbital modulation from the heated face of the secondary star should be more prominent at high inclinations. Modulation at the disc precession period (10s of days) may indicate disc asymmetries such as warping. We comment on the orbital period determinations of LMXBs, and the possibility and significance of possible permanent superhump LMXBs.Comment: 6 pages, 1 encapsulated figure. MNRAS in press; replaced to correct typographical error

    Comprehensive simulations of superhumps

    Full text link
    (Abridged) We use 3D SPH calculations with higher resolution, as well as with more realistic viscosity and sound-speed prescriptions than previous work to examine the eccentric instability which underlies the superhump phenomenon in semi-detached binaries. We illustrate the importance of the two-armed spiral mode in the generation of superhumps. Differential motions in the fluid disc cause converging flows which lead to strong spiral shocks once each superhump cycle. The dissipation associated with these shocks powers the superhump. We compare 2D and 3D results, and conclude that 3D simulations are necessary to faithfully simulate the disc dynamics. We ran our simulations for unprecedented durations, so that an eccentric equilibrium is established except at high mass ratios where the growth rate of the instability is very low. Our improved simulations give a closer match to the observed relationship between superhump period excess and binary mass ratio than previous numerical work. The observed black hole X-ray transient superhumpers appear to have systematically lower disc precession rates than the cataclysmic variables. This could be due to higher disc temperatures and thicknesses. The modulation in total viscous dissipation on the superhump period is overwhelmingly from the region of the disc within the 3:1 resonance radius. As the eccentric instability develops, the viscous torques are enhanced, and the disc consequently adjusts to a new equilibrium state, as suggested in the thermal-tidal instability model. We quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08. We characterise the eccentricity distributions in our accretion discs, and show that the entire body of the disc partakes in the eccentricity.Comment: 18 pages (mn2e LaTeX), 14 figures, 5 tables, Accepted for publication in MNRA

    Late superhumps and the stream-disc impact in IY UMa

    Get PDF
    We use the hot spot eclipse times of the newly discovered deeply-eclipsing dwarf nova IY UMa to trace out the shape of its disc during the late superhump era. We find an eccentric disc. We show that the brightness of the stream-disc impact region varies as expected with |deltaV|^2, where deltaV is the differential velocity of the stream with respect to the velocity of the disc at the impact point. We conclude that the hot spot is the source of late superhump light.Comment: 7 pages, 9 figures, accepted for publication in MNRAS. Minor changes to original content, additional modelling and figure

    Mass transfer during low mass X-ray transient decays

    Get PDF
    The outbursts of low mass X-ray binaries are prolonged relative to those of dwarf nova cataclysmic variables as a consequence of X-ray irradiation of the disc. We show that the time-scale of the decay light curve and its luminosity at a characteristic time are linked to the radius of the accretion disc. Hence a good X-ray light curve permits two independent estimates of the disc radius. In the case of the milli-second pulsars SAX J1808.4-3658 and XTE J0929-314 the agreement between these estimates is very strong. Our analysis allows new determinations of distances and accretion disc radii. Our analysis will allow determination of accretion disc radii for sources in external galaxies, and hence constrain system parameters where other observational techniques are not possible. We also use the X-ray light curves to estimate the mass transfer rate. The broken exponential decay observed in the 2002 outburst of SAX J1808.4-3658 may be caused by the changing self-shadowing of the disc.Comment: 11 pages, 15 figures, 3 tables. Accepted MNRAS Oct 200

    Simulations of spectral lines from an eccentric precessing accretion disc

    Full text link
    Two dimensional SPH simulations of a precessing accretion disc in a q=0.1 binary system (such as XTE J1118+480) reveal complex and continuously varying shape, kinematics, and dissipation. The stream-disc impact region and disc spiral density waves are prominent sources of energy dissipation.The dissipated energy is modulated on the period P_{sh} = ({P_{orb}}^{-1}-{P_{prec}}^{-1}^{-1} with which the orientation of the disc relative to the mass donor repeats. This superhump modulation in dissipation energy has a variation in amplitude of ~10% relative to the total dissipation energy and evolves, repeating exactly only after a full disc precession cycle. A sharp component in the light curve is associated with centrifugally expelled material falling back and impacting the disc. Synthetic trailed spectrograms reveal two distinct "S-wave" features, produced respectively by the stream gas and the disc gas at the stream-disc impact shock. These S-waves are non-sinusoidal, and evolve with disc precession phase. We identify the spiral density wave emission in the trailed spectrogram. Instantaneous Doppler maps show how the stream impact moves in velocity space during an orbit. In our maximum entropy Doppler tomogram the stream impact region emission is distorted, and the spiral density wave emission is uppressed. A significant radial velocity modulation of the whole line profile occurs on the disc precession period. We compare our SPH simulation with a simple 3D model: the former is appropriate for comparison with emission lines while the latter is preferable for skewed absorption lines from precessing discs.Comment: See http://physics.open.ac.uk/FHMR/ for associated movie (avi) files. The full paper is in MNRAS press. Limited disk space limit of 650k, hence low resolution figure file

    Three dimensional SPH simulations of radiation-driven warped accretion discs

    Full text link
    We present three dimensional smoothed particle hydrodynamics (SPH) calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and in general the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios q ~ 0.1 a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (c.f. X 1916-053). For less extreme mass ratios the entire disc tilts out of the orbital plane (c.f. Her X-1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction we obtain both positive and negative superhumps simultaneously in the dissipation light curve (c.f. V603 Aql).Comment: 12 pages, 12 figures, paper accepted for publication by MNRA
    • 

    corecore