18 research outputs found

    Tolerance of sexual harassment: A laboratory paradigm

    Get PDF
    The present study attempted to develop a laboratory analogue for the study of tolerance for sexual harassment by using an online speed-dating paradigm. In that context, the relation between participants’ sexual harassment attitudes, perpetrator attractiveness, perpetrator status, and perceived dating potential of the perpetrator were examined as factors influencing participants’ tolerance of sexually harassing behavior. Participants were 128 female college students from a small northeastern public university. Results indicated that attractiveness, high social status, and attitudinal beliefs about sexual harassment were all predictive of tolerance for sexual harassment, providing preliminary support for the validity of this paradigm. In addition, participants’ self reported likelihood to date a bogus male dating candidate was also predictive of tolerance for sexual harassment, over and above the aforementioned variables, suggesting that dating potential can play a role in perceptions of sexual harassment. Further, this experiment demonstrated that perceptions of sexual harassment can be assessed using the in vivo measurement of behavior. In addition, using an online environment not only provides a contemporary spin and adds a greater degree of external validity compared to other sexual harassment analogues, it also reduces any risk of potential physical sexual contact for participants

    Atypical chemokine receptor 4 shapes activated B cell fate

    Get PDF
    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate

    Valley-hybridized gate-tunable 1D exciton confinement in MoSe2

    Full text link
    Controlling excitons at the nanoscale in semiconductor materials represents a formidable challenge in the fields of quantum photonics and optoelectronics. Achieving this control holds great potential for unlocking strong exciton-exciton interaction regimes, enabling exciton-based logic operations, exploring exotic quantum phases of matter, facilitating deterministic positioning and tuning of quantum emitters, and designing advanced optoelectronic devices. Monolayers of transition metal dichalcogenides (TMDs) offer inherent two-dimensional confinement and possess significant binding energies, making them particularly promising candidates for achieving electric-field-based confinement of excitons without dissociation. While previous exciton engineering strategies have predominantly focused on local strain gradients, the recent emergence of electrically confined states in TMDs has paved the way for novel approaches. Exploiting the valley degree of freedom associated with these confined states further broadens the prospects for exciton engineering. Here, we show electric control of light polarization emitted from one-dimensional (1D) quantum confined states in MoSe2. By employing non-uniform in-plane electric fields, we demonstrate the in-situ tuning of the trapping potential and reveal how gate-tunable valley-hybridization gives rise to linearly polarized emission from these localized states. Remarkably, the polarization of the localized states can be entirely engineered through either the spatial geometry of the 1D confinement potential or the application of an out-of-plane magnetic field

    Atypical chemokine receptor 4 shapes activated B cell fate

    Get PDF
    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate.This work was supported in part by a grant from the Australian National Health and Medical Research Council (APP1105312) to S.R. McColl, J.G. Cyster, and I. Comerford, J.G. Cyster is an investigator of the Howard Hughes Medical Institute. E.E. Kara is supported by an Australian postgraduate award, a Norman and Patricia Polglase scholarship, and a National Health and Medical Research Council C.J. Martin Overseas Biomedical fellowship

    Confinement of long-lived interlayer excitons in WS 2 /WSe 2 heterostructures

    Get PDF
    Abstract: Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. Long-lived excitons are required to achieve high particle densities, to mediate thermalisation, and to allow for spatially and temporally correlated phases. Additionally, the ability to confine them in periodic arrays is key to building a solid-state analogue to atoms in optical lattices. Here, we demonstrate interlayer excitons with lifetime approaching 0.2 ms in a layered-material heterostructure made from WS2 and WSe2 monolayers. We show that interlayer excitons can be localised in an array using a nano-patterned substrate. These confined excitons exhibit microsecond-lifetime, enhanced emission rate, and optical selection rules inherited from the host material. The combination of a permanent dipole, deterministic spatial confinement and long lifetime places interlayer excitons in a regime that satisfies one of the requirements for simulating quantum Ising models in optically resolvable lattices

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures

    No full text
    Excitons are quasiparticles consisting of an electron-hole pair and can be used to study many-body phenomenon. Here, the authors demonstrate on-demand quantum confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures deposited on nanopatterned substrates
    corecore