40 research outputs found

    Assessing Habitability: Lessons from the Phoenix Mission

    Get PDF
    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered ~1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of various regions visited to date on Mars that involved computing a habitability probability, defined as the product of probabilities for the presence of liquid water (P(sub lw)), energy (P(sub e)), nutrients (P(sub ch)), and a benign environment (P(sub b)). Using this formalism, they argued that the Phoenix site was the most habitable of any site visited to date by landed missions and warranted a follow up mission to search for modern evidence of life. This paper will review that conclusion in view of more recent information from the Mars Exploration Rovers and Mars Science Lander missions

    The Goals and Approach of the Phoenix Mission for Evaluating the Habitabiity of the Northern Plains on Mars

    Get PDF
    The first goal of the Mars Exploration program, as defined by the Mars Exploration Payload Analysis Group (MEPAG) is to determine if life ever arose on Mars [1]. The Phoenix landing site was chosen to sample near surface ground ice in the Northern Plains discovered by the GRS experiment on Mars Odyssey [2]. A goal of Phoenix is to determine whether this environment was habitable for life at some time in its history

    Low Cost Mars Sample Return Utilizing Dragon Lander Project

    Get PDF
    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit

    Telepresence in the human exploration of Mars: Field studies in analog environments

    Get PDF
    This paper describes the role of telepresence in performing exploration of Mars. As part of an effort to develop telepresence to support Mars exploration, NASA is developing telepresence technology and using it to perform exploration in space analog environments. This paper describes experiments to demonstrate telepresence control of an underwater remotely operated vehicle (TROV) to perform scientific field work in isolated and hostile environments. Toward this end, we have developed a telepresence control system and interfaced it to an underwater remotely operated vehicle. This vehicle was used during 1992 to study aquatic ecosystems in Antarctica including a study of the physical and biological environment of permanently ice-covered lake. We also performed a preliminary analysis of the potential for using the TROV to study the benthic ecology under the sea ice in McMurdo sound. These expeditions are opening up new areas of research by using telepresence control of remote vehicles to explore isolated and extreme environments on Earth while also providing an impetus to develop technology which will play a major role in the human exploration of Mars. Antarctic field operations, in particular, provide an excellent analog experience for telepresence operation in space

    Concretions in Exhumed Channels Near Hanksville Utah: Implications for Mars

    Get PDF
    The landscape near Hanksville, Utah, contains a diversity of Mars analogue features. These included segmented and inverted anatasomosing palaeochannels exhumed from the Late Jurassic Brushy Basin Member of the Morrison Formation that hosts abundant small carbonate concretions. The exhumed and inverted channels closely resemble many seen on the surface of Mars in satellite imagery and which may be visited by surface missions in the near future. The channels contain a wealth of palaeo-environmental information, but intrinsically difficult terrain would make their study challenging on Mars. We show that an unexhumed channel feature can be detected geophysically, this may allow their study in more easily accessed terrain. The concretions morphologically and in their surface expression parallel the haematite blue berries that are strewn across the surface of Meridiani Planum on Mars. They are best developed in poorly cemented medium to coarse channel sandstones and appear to have formed early in the diagenetic history

    Mars Sample Return Landed with Red Dragon

    Get PDF
    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged spacecraft designs capable of meeting mission requirements. Subsystems modeled in this study included structures, power system, propulsion system, nose fairing, thermal insulation, actuation devices, and GN&C. Best practice application of loads and design margins for all resources were used. Both storable and cryogenic propellant systems were examined. The landed mass and lander capsule size provide boundary conditions for the MAV design and packaging. We estimated the maximum mass the Dragon capsule is capable of landing. This and the volume capability to store the MAV was deduced from publically available data from SpaceX as well as our own engineering and aerodynamic estimates. Minimum gross-liftoff mass (GLOM) for the MAV were obtained for configurations that used pump-fed storable bi-propellant rocket engines for both the MAV and the ERV stage. The GLOM required fits within our internal estimate of the mass that Dragon can land at low elevation/optimal seasons on Mars. Based on the analysis, we show that a single Mars launch sample return mission is feasible using current commercial capabilities to deliver the return spacecraft assets

    Mars brine formation experiment

    Get PDF
    The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals

    A Coupled Soil-Atmosphere Model of H2O2 on Mars

    Get PDF
    The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds, protected from an oxidizing environment, may still exist. They would have been deposited by meteors, or be the organic remains of past life

    Mars Sample Return Using Commercial Capabilities: ERV Trajectory and Capture Requirements

    Get PDF
    Mars Sample Return was presented as the highest priority planetary science mission of the next decade [1]. Lemke et al. [2] present a Mars Sample Return mission concept in which the sample is returned directly from the surface of Mars to an Earth orbit. The sample is recovered in Earth Orbit instead of being transferred between spacecraft in Mars Orbit. This paper provides the details of this sample recovery in Earth orbit and presents as such a sub-element of the overall Mars sample return concept given in [2]. We start from the assumption that a Mars Ascent Vehicle (MAV), initially landed on Mars using a modified SpaceX Dragon capsule, has successfully delivered the sample, already contained within an Earth Return Vehicle (ERV), to a parking orbit around Mars. From the parking orbit, the ERV imparts sufficient Delta-V to inject itself into an earthbound trajectory and to be captured into an Earth orbit eventually. We take into account launch window and Delta-V considerations as well as the additional constraint of increased safety margins imposed by planetary protection regulations. We focus on how to overcome two distinct challenges of the sample return that are driven by the issues of planetary protection: (1) the design of an ERV trajectory meeting all the requirements including the need to avoid contamination of Earth's atmosphere; (2) the concept of operations for retrieving the Martian samples in Earth orbit in a safe way. We present an approach to retrieve the samples through a rendezvous between the ERV and a second SpaceX Dragon capsule. The ERV executes a trajectory that brings it from low Mars orbit (LMO) to a Moon-trailing Earth orbit at high inclination with respect to the Earth-Moon plane. After a first burn at Trans-Earth Injection (TEI), the trajectory uses a second burn at perigee during an Earth flyby maneuver to capture the ERV in Earth orbit. The ERV then uses a non-propulsive Moon flyby to come to a near-circular Moon-trailing orbit. To perform the Earth Orbit Rendezvous (EOR), a second Dragon capsule is then launched from Earth and a similar lunar flyby is performed to rendezvous with the ERV. The requirements for rendezvous, close proximity operations and capture of the sample canister are described. A concept of operations for sample retrieval is presented along with design specifications of the ERV, the required modifications to the Dragon capsule, as well as the hardware, software, sensors, actuators, and capture mechanisms used. In our concept, a container is mounted to the front hatch of Dragon, capable of accommodating the sample canister and sealing it from the rest of the capsule. The sample canister is captured using a robotic arm with a magnetic grappling mechanism. Dragon then performs a propulsive maneuver to return to Earth for a controlled re-entry while the ERV (sans sample container) is left in the Moon trailing orbit. Contingency cases and related mitigation strategies are also discussed, including the advantages and disadvantages of performing the ERV rendezvous with a crew

    A Sample Sifter for the Proposed Icebreaker Mars Mission

    Get PDF
    The Icebreaker mission proposes to land at the site where the Phoenix mission discovered an environment that is habitable for life in recent times [1], and search for biomarkers of life. The subsurface ice is expected at shallow depth (<10 cm below the surface)[2]. By drilling up to 1 m depth into the icy material, Icebreaker plans to sample ice that was warm during past high obliquity periods. Samples are analyzed for organics and biomolecules
    corecore