210 research outputs found

    Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction

    Full text link
    We investigate the efficiency at maximum power of an irreversible Carnot engine performing finite-time cycles between two reservoirs at temperatures ThT_h and TcT_c (Tc<Th)(T_c<T_h), taking into account of internally dissipative friction in two "adiabatic" processes. In the frictionless case, the efficiencies at maximum power output are retrieved to be situated between ηC/\eta_{_C}/ and ηC/(2−ηC)\eta_{_C}/(2-\eta_{_C}), with ηC=1−Tc/Th\eta_{_C}=1-T_c/{T_h} being the Carnot efficiency. The strong limits of the dissipations in the hot and cold isothermal processes lead to the result that the efficiency at maximum power output approaches the values of ηC/\eta_{_C}/ and ηC/(2−ηC)\eta_{_C}/(2-\eta_{_C}), respectively. When dissipations of two isothermal and two adiabatic processes are symmetric, respectively, the efficiency at maximum power output is founded to be bounded between 0 and the Curzon-Ahlborn (CA) efficiency 1−1−ηC1-\sqrt{1-\eta{_C}}, and the the CA efficiency is achieved in the absence of internally dissipative friction

    Intrinsic Periodicity of Time and Non-maximal Entropy of Universe

    Full text link
    The universe is certainly not yet in total thermodynamical equilibrium,so clearly some law telling about special initial conditions is needed. A universe or a system imposed to behave periodically gets thereby required ``initial conditions". Those initial conditions will \underline{not} look like having already suffered the heat death, i.e. obtained the maximal entropy, like a random state. The intrinsic periodicity explains successfully why entropy is not maximal, but fails phenomenologically by leading to a \underline{constant}entropy.Comment: 8 page

    Quantum mechanical Carnot engine

    Get PDF
    A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.Comment: 10 page

    Efficiency of a thermodynamic motor at maximum power

    Full text link
    Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called "Curzon-Ahlborn (CA) efficiency." Considering the entropy exchanges and productions in an n-sources motor, we study the maximization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or "sustainable efficiency," which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2

    Shannon Meets Carnot: Generalized Second Thermodynamic Law

    Full text link
    The classical thermodynamic laws fail to capture the behavior of systems with energy Hamiltonian which is an explicit function of the temperature. Such Hamiltonian arises, for example, in modeling information processing systems, like communication channels, as thermal systems. Here we generalize the second thermodynamic law to encompass systems with temperature-dependent energy levels, dQ=TdS+dTdQ=TdS+dT, where denotes averaging over the Boltzmann distribution and reveal a new definition to the basic notion of temperature. This generalization enables to express, for instance, the mutual information of the Gaussian channel as a consequence of the fundamental laws of nature - the laws of thermodynamics

    Carnot cycle for an oscillator

    Get PDF
    Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature ThotT_{hot} and a bath at a lower temperature TcoldT_{cold} cannot exceed 1−Tcold/Thot1-T_{cold}/T_{hot}. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as in the classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The paper begins with historical considerations and is essentially self-contained.Comment: 19 pages, 3 figures, sumitted to European Journal of Physics Changed content: Fluctuations are considere

    Law Behind Second Law of Thermodynamics --Unification with Cosmology--

    Full text link
    In an abstract setting of a general classical mechanical system as a model for the universe we set up a general formalism for a law behind the second law of thermodynamics, i.e. really for "initial conditions". We propose a unification with the other laws by requiring similar symmetry and locality properties.Comment: 17 page

    Dynamical typicality of embedded quantum systems

    Get PDF
    We consider the dynamics of an arbitrary quantum system coupled to a large arbitrary and fully quantum mechanical environment through a random interaction. We establish analytically and check numerically the typicality of this dynamics, in other words the fact that the reduced density matrix of the system has a self-averaging property. This phenomenon, which lies in a generalized central limit theorem, justifies rigorously averaging procedures over certain classes of random interactions and can explain the absence of sensitivity to microscopic details of irreversible processes such as thermalisation. It provides more generally a new ergodic principle for embedded quantum systems.Comment: 9 pages. Accepted for publication in Phys. Rev. A. This article supersedes the part on "dynamical typicality" in arXiv:1510.0435

    Brownian Carnot engine

    Get PDF
    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro-engines operate. As described by stochastic thermodynamics, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit. Despite its potential relevance for the development of a thermodynamics of small systems, an experimental study of microscopic Carnot engines is still lacking. Here we report on an experimental realization of a Carnot engine with a single optically trapped Brownian particle as working substance. We present an exhaustive study of the energetics of the engine and analyze the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency -an insight that could inspire novel strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure

    The falling chain of Hopkins, Tait, Steele and Cayley

    Get PDF
    A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3g/3 if the motion is nonconservative, but g/2g/2 if the motion is conservative, gg being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home camcorder is used to measure the fall of a three-dimensional version called an xyzxyz-slider. After frictional effects are corrected for, its vertical falling acceleration is found to be ax/g=0.328±0.004a_x/g = 0.328 \pm 0.004. This result agrees with the theoretical value of ax/g=1/3a_x/g = 1/3 for an ideal energy-conserving xyzxyz-slider.Comment: 17 pages, 5 figure
    • …
    corecore