18 research outputs found

    What Was Learned - Outcomes Assessment Under Criteria 2000 At WPI

    Get PDF
    Six WPI engineering programs were evaluated under Criteria 2000 during a pilot accreditation visit in 1996. The WPI PLAN consists of degree requirements focused on the achievement of outcomes related to those of Criteria 2000. The mapping of degree requirement outcomes to the elements of the Criteria hinged on the translation of student performance metrics and their interpretation. Not surprisingly, substantial effort was necessary to ensure the identification of all elements of Criteria 2000, including the applicable Program Criteria in the academic program outcomes

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U

    Hybrid energy absorbing reusable terminal

    No full text
    An energy absorbing terminal is described that is made up of a plurality of cells partially defined by cambered panels made of thermoplastic or another suitable material. The panels are supported upon rectangular frames. The cambered portion of the panels provides a predetermined point of flexure for each panel and, thus, allows for energy dissipation during a collision. The stiffness of the crash cushion may be varied by altering material thicknesses and diaphragm spacing. In operation, a vehicle colliding in an end-on manner with the upstream end of the energy absorbing terminal will cause each of the cambered panels to bend angularly at its point of flexure and, thus, cause the cells to collapse axially. The use of thermoplastic, such as polyethylene results in a reversible, self-restoring collapse for the terminal, meaning that the terminal is reusable after most collisions.U
    corecore