7 research outputs found

    Blazar Variability with the Vera C. Rubin Legacy Survey of Space and Time

    Get PDF
    With their emission mainly coming from a relativistic jet pointing toward us, blazars are fundamental sources for studying extragalactic jets and their central engines, consisting of supermassive black holes fed by accretion disks. They are also candidate sources of high-energy neutrinos and cosmic rays. Because of the jet orientation, the nonthermal blazar emission is Doppler beamed; its variability is unpredictable, and it occurs on timescales from less than 1 hr to years. Comprehension of the diverse mechanisms producing the flux and spectral changes requires well-sampled multiband light curves over long time periods. In particular, outbursts are the best test bench for shedding light on the underlying physics, especially when studied in a multiwavelength context. The Vera C. Rubin Legacy Survey of Space and Time (Rubin-LSST) will monitor the southern sky for 10 yr in six photometric bands, offering a formidable tool for studying blazar variability features in a statistical way. The alert system will allow us to trigger follow-up observations of outstanding events, especially at high (keV-to-GeV) and very high (TeV) energies. We here examine the simulated Rubin-LSST survey strategies with the aim of understanding which cadences are more suitable for blazar variability science. Our metrics include light curve and color sampling. We also investigate the problem of saturation, which will affect the brightest and many flaring sources, and will have a detrimental impact on follow-up observations

    Gaia Data Release 3: The first Gaia catalogue of variable AGN

    Full text link
    One of the novelties of the Gaia-DR3 with respect to the previous data releases is the publication of the multiband light curves of about 1 million AGN. The goal of this work was the creation of a catalogue of variable AGN, whose selection was based on Gaia data only. We first present the implementation of the methods to estimate the variability parameters into a specific object study module for AGN. Then we describe the selection procedure that led to the definition of the high-purity variable AGN sample and analyse the properties of the selected sources. We started from a sample of millions of sources, which were identified as AGN candidates by 11 different classifiers based on variability processing. Because the focus was on the variability properties, we first defined some pre-requisites in terms of number of data points and mandatory variability parameters. Then a series of filters was applied using only Gaia data and the Gaia Celestial Reference Frame 3 (Gaia-CRF3) sample as a reference.The resulting Gaia AGN variable sample, named GLEAN, contains about 872000 objects, more than 21000 of which are new identifications. We checked the presence of contaminants by cross-matching the selected sources with a variety of galaxies and stellar catalogues. The completeness of GLEAN with respect to the variable AGN in the last Sloan Digital Sky Survey quasar catalogue is about 47%, while that based on the variable AGN of the Gaia-CRF3 sample is around 51%. From both a comparison with other AGN catalogues and an investigation of possible contaminants, we conclude that purity can be expected to be above 95%. Multiwavelength properties of these sources are investigated. In particular, we estimate that about 4% of them are radio-loud. We finally explore the possibility to evaluate the time lags between the flux variations of the multiple images of strongly lensed quasars, and show one case.Comment: 19 pages, 31 figures, 2 table. This paper is part of Gaia Data Release 3 (DR3). In press for A&

    Multiwavelength behaviour of the blazar OJ 248 from radio to γ-rays

    Get PDF
    We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the Gamma-Ray Large Area Space Telescope (GLAST)-AGILE Support Program of the Whole Earth Blazar Telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman α intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the γ-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches ∼19 per cent during the early stage of the 2012-2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarization angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour/structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg II broad emission line with an essentially stable flux of 6.2 × 10- 15 erg cm- 2 s- 1 and a full width at half-maximum of 2053 km s- 1

    Gaia Early Data Release 3: Structure and properties of the Magellanic Clouds

    Get PDF
    We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones

    Investigating the Puzzling Synchrotron Behaviour of Mrk 421

    Get PDF
    We investigate the multiwavelength behaviour of the high-energy peaked BL Lac object (HBL) Mrk 421 at redshift z = 0.031 in the period 2007-2015. We use optical photometric, spectroscopic, and polarimetric data and near-infrared data obtained by 35 observatories participating in the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as by the Steward Observatory Support of the Fermi Mission. We also employ high-energy data from the Swift (UV and X-rays) satellite to study correlations among emission in different bands.open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Investigating the multiwavelength behaviour of the flat spectrum radio quasar CTA 102 during 2013–2017

    Get PDF
    We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013-2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented gamma-ray flaring activity was observed during 2016 November-2017 February, with four major outbursts. A peak flux of (2158 +/- 63) x 10(-8) ph cm(-2) s(-1), corresponding to a luminosity of (2.2 +/- 0.1) x10(50) erg s(-1), was reached on 2016 December 28. These four gamma-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and gamma-ray activity is found. The gamma-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This gamma-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.Bulgarian National Science Fund of the Ministry of Education and Science [DN 08-1/2016, DN 18-13/2017, KP-06-H28/3 (2018)]; Foundation for Research and Technology -Hellas; Max-Planck-Institut fur Extraterrestrische Physik; Shota Rustaveli National Science Foundation [FR/217554/16]; Russian Science FoundationRussian Science Foundation (RSF) [17-12-01029]; Institute of Astronomy and Rozhen National Astronomical Observatory [176011, 176004, 176021]; Ministry of Education, Science and Technological Development of the Republic of Serbia; DGAPA (Universidad Nacional Autonoma de M'exico)Universidad Nacional Autonoma de Mexico; PAPIIT projectPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) [IN114917]; Smithsonian InstitutionSmithsonian Institution; Academia SinicaAcademia Sinica - Taiwan; NASA/Fermi Guest Investigator [NNX12AO93G, NNX15AU81G]; Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund [DN18-10/2017]; National RI Roadmap Projects [DO1-157/28.08.2018, DO1-153/28.08.2018]; Ministry of Education and Science of the Republic of Bulgaria; Regional Government of the Aosta Valley - 'Research and Education' grants from Fondazione CRT; CONICYT project Basal [AFB-170002]; Russian Government Program of Competitive Growth of Kazan Federal University; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA); Department of Energy in the United StatesUnited States Department of Energy (DOE); Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in FranceCentre National de la Recherche Scientifique (CNRS); Agenzia Spaziale ItalianaItalian Space Agency; Istituto Nazionale di Fisica Nucleare in ItalyIstituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT); K. A. Wallenberg FoundationKnut & Alice Wallenberg Foundation; Swedish Research CouncilSwedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in ItalyIstituto Nazionale Astrofisica; Centre National d'Etudes Spatiales in FranceCentre National D'etudes Spatiales; United States Department of Energy (DOE) [DE-AC02-76SF00515]; National Aeronautics & Space Administration (NASA) [NNX08AW31G, NNX11A043G, NNX14AQ89G]; National Science Foundation (NSF) [AST-0808050, AST-1109911]; NASA's Goddard Space Flight CenterThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    The extreme HBL behaviour of Markarian 501 during 2012

    No full text
    A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of \sim0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was \sim3 CU, and the peak of the high-energy spectral component was found to be at \sim2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays
    corecore