5 research outputs found

    In vitro cytotoxicity of the LDE: daunorubicin complex in acute myelogenous leukemia blast cells

    No full text
    Acute myelogenous leukemia (AML) blast cells show high-affinity degradation of low-density lipoprotein (LDL), suggesting an increased expression of cellular LDL receptors. LDE is a lipid microemulsion easily synthesized in vitro which is known to mimic the metabolic pathway of LDL. We used LDE as a carrier for daunorubicin and assayed the cytotoxicity of the complex using AML blast cells since RT-PCR analysis showed that AML cells express LDL receptor mRNA. The LDE:daunorubicin complex killed 46.7% of blast cells and 20.2% of normal bone marrow cells (P<0.001; Student t-test). Moreover, this complex destroyed AML blast cells as efficiently as free daunorubicin. Thus, LDE might be a suitable carrier of chemotherapeutic agents targeting these drugs to neoplastic cells and protecting normal tissues

    A molecular perspective of the genetic relationships of G-protein coupled melatonin receptor subtypes

    No full text
    Successful cloning of melatonin receptors from various target tissues in the past few years has increased our understanding of the molecular signal transduction mechanisms of G-protein coupled melatonin receptors, of which three subtypes (MEL-1A, MEL-1B, and MEL-1C) have been reported in different vertebrates. Based upon melatonin receptor sequences available in the Genbank database, we have performed phylogenetic analyses of the nucleotide and encoded amino acid sequences of G-protein-coupled melatonin receptors, and determined the range of amino acid identities between melatonin receptors of the same and different subtypes. Besides the three well-known subtypes, a potential novel subtype of MEL-1D, as exemplified by unique separation of Xenopus X2.0 sequence (Genbank accession No. U31826) from the others in the protein phylogenetic tree, possibly exists. In addition, one of the chicken brain melatonin receptor sequences has been identified as belonging to the MEL-1B subtype. Our analyses showed that melatonin receptors of the same subtype and different subtypes are likely to share ≥75% and <65% amino acid identities, respectively. Phylogenetic analysis based on amino acid comparisons will be needed to determine the subtype status of any pair of melatonin receptor sequences that exhibit ≥65% to <75% amino acid identity. Despite the usefulness of genetic relatedness in the subtype classification of G-protein-coupled melatonin receptors, functional correlation of molecular structure may ultimately prove the most comprehensive approach in melatonin receptor classification. © Munksgaard.link_to_subscribed_fulltex
    corecore