2,495 research outputs found

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Controle genético da resistência a murcha-de-fusário em feijoeiro comum.

    Get PDF
    Os objetivos do trabalho foram avaliar o controle genético da reação ao agente causal da murcha-de-fusário, a partir dos cruzamentos Milionário 1732 x Macanudo e FT Tarumã x Macanudo, e estimar parâmetros genéticos que permitam selecionar famílias resistentes à doença

    Inhomogeneous vacuum energy

    Get PDF
    Vacuum energy remains the simplest model of dark energy which could drive the accelerated expansion of the Universe without necessarily introducing any new degrees of freedom. Inhomogeneous vacuum energy is necessarily interacting in general relativity. Although the four-velocity of vacuum energy is undefined, an interacting vacuum has an energy transfer and the vacuum energy defines a particular foliation of spacetime with spatially homogeneous vacuum energy in cosmological solutions. It is possible to give a consistent description of vacuum dynamics and in particular the relativistic equations of motion for inhomogeneous perturbations given a covariant prescription for the vacuum energy, or equivalently the energy transfer four-vector, and we construct gauge-invariant vacuum perturbations. We show that any dark energy cosmology can be decomposed into an interacting vacuum+matter cosmology whose inhomogeneous perturbations obey simple first-order equations.Comment: 8 pages; v2 clarified discussion of Chaplygin gas model, references adde

    Inhomogeneous cosmologies, the Copernican principle and the cosmic microwave background: More on the EGS theorem

    Get PDF
    We discuss inhomogeneous cosmological models which satisfy the Copernican principle. We construct some inhomogeneous cosmological models starting from the ansatz that the all the observers in the models view an isotropic cosmic microwave background. We discuss multi-fluid models, and illustrate how more general inhomogeneous models may be derived, both in General Relativity and in scalar-tensor theories of gravity. Thus we illustrate that the cosmological principle, the assumption that the Universe we live in is spatially homogeneous, does not necessarily follow from the Copernican principle and the high isotropy of the cosmic microwave background.Comment: 17 pages; to appear in GR

    Vortex-line liquid phases: Longitudinal superconductivity in the lattice London model

    Full text link
    We study the vortex-line lattice and liquid phases of a clean type-II superconductor by means of Monte Carlo simulations of the lattice London model. Motivated by a recent controversy regarding the presence, within this model, of a vortex-liquid regime with longitudinal superconducting coherence over long length scales, we directly compare two different ways to calculate the longitudinal coherence. For an isotropic superconductor, we interpret our results in terms of a temperature regime within the liquid phase in which longitudinal superconducting coherence extends over length scales larger than the system thickness studied. We note that this regime disappears in the moderately anisotropic case due to a proliferation, close to the flux-line lattice melting temperature, of vortex loops between the layers.Comment: 8 pages, Revtex, with eps figures. To appear in Phys. Rev.

    Leading Temperature Corrections to Fermi Liquid Theory in Two Dimensions

    Full text link
    We calculate the basic parameters of the Fermi Liquid: the scattering vertex, the Landau interaction function, the effective mass, and physical susceptibilities for a model of two-dimensional (2D) fermions with a short ranged interaction at non-zero temperature. The leading temperature dependences of the spin components of the scattering vertex, the Landau function, and the spin susceptibility are found to be linear. T-linear terms in the effective mass and in the ``charge-sector''- quantities are found to cancel to second order in the interaction, but the cancellation is argued not to be generic. The connection with previous studies of the 2D Fermi-Liquid parameters is discussed.Comment: 4 pages, 1 figur
    • …
    corecore