3,468 research outputs found

    Non-Fermi-Liquid Specific Heat of Normal Degenerate Quark Matter

    Full text link
    We compute the low-temperature behavior of the specific heat of normal (non-color-superconducting) degenerate quark matter as well as that of an ultradegenerate electron gas. Long-range magnetic interactions lead to non-Fermi-liquid behavior with an anomalous leading TlnT1T\ln T^{-1} term. Depending on the thermodynamic potential used as starting point, this effect appears as a consequence of the logarithmic singularity in the fermion self-energy at the Fermi surface or directly as a contribution from the only weakly screened quasistatic magnetic gauge bosons. We show that a calculation of Boyanovsky and de Vega claiming the absence of a leading TlnT1T\ln T^{-1} term missed it by omitting vector boson contributions to the internal energy. Using a formulation which collects all nonanalytic contributions in bosonic ring diagrams, we systematically calculate corrections beyond the well-known leading-log approximation. The higher-order terms of the low-temperature expansion turn out to also involve fractional powers T(3+2n)/3T^{(3+2n)/3} and we explicitly determine their coefficients up to and including order T7/3T^{7/3} as well as the subsequent logarithmically enhanced term T3ln(c/T)T^3 \ln (c/T). We derive also a hard-dense-loop resummed expression which contains the infinite series of anomalous terms to leading order in the coupling and which we evaluate numerically. At low temperatures, the resulting deviation of the specific heat from its value in naive perturbation theory is significant in the case of strongly coupled normal quark matter and thus of potential relevance for the cooling rates of (proto-)neutron stars with a quark matter component.Comment: REVTEX, 26 pages, 5 postscript figures. v3: new chapter added which performs a complete hard-dense-loop resummation, covering the infinite series of anomalous terms and extending the range of applicability to all T << m

    Monte-Carlo calculation of longitudinal and transverse resistivities in a model Type-II superconductor

    Full text link
    We study the effect of a transport current on the vortex-line lattice in isotropic type-II superconductors in the presence of strong thermal fluctuations by means of 'driven-diffusion' Monte Carlo simulations of a discretized London theory with finite magnetic penetration depth. We calculate the current-voltage (I-V) characteristics for various temperatures, for transverse as well as longitudinal currents I. From these characteristics, we estimate the linear resistivities R_xx=R_yy and R_zz and compare these with equilibrium results for the vortex-lattice structure factor and the helicity moduli. From this comparison a consistent picture arises, in which the melting of the flux-line lattice occurs in two stages for the system size considered. In the first stage of the melting, at a temperature T_m, the structure factor drops to zero and R_xx becomes finite. For a higher temperature T_z, the second stage takes place, in which the longitudinal superconducting coherence is lost, and R_zz becomes finite as well. We compare our results with related recent numerical work and experiments on cuprate superconductors.Comment: 4 pages, with eps figure

    Ultraviolet and Infrared Divergences in Implicit Regularization: a Consistent Approach

    Full text link
    Implicit Regularization is a 4-dimensional regularization initially conceived to treat ultraviolet divergences. It has been successfully tested in several instances in the literature, more specifically in those where Dimensional Regularization does not apply. In the present contribution we extend the method to handle infrared divergences as well. We show that the essential steps which rendered Implicit Regularization adequate in the case of ultraviolet divergences have their counterpart for infrared ones. Moreover we show that a new scale appears, typically an infrared scale which is completely independent of the ultraviolet one. Examples are given.Comment: 9 pages, version to appear in Mod. Phys. Lett.
    corecore