7,344 research outputs found

    A model for the wind direction signature in the stokes smissin sector from the ocean surfaces at microwave frequencies

    Get PDF
    This paper presents a model of the Stokes emission vector from the ocean surface. The ocean surface is described as an ensemble of facets with Cox and Munk's (1954) Gram-Charlier slope distribution. The study discusses the impact of different up-wind and cross-wind rms slopes, skewness, peakedness, foam cover models and atmospheric effects on the azimuthal variation of the Stokes vector, as well as the limitations of the model. Simulation results compare favorably, both in mean value and azimuthal dependence, with SSM/I data at 53/spl deg/ incidence angle and with JPL's WINDRAD measurements at incidence angles from 30/spl deg/ to 65/spl deg/, and at wind speeds from 2.5 to 11 m/s.Peer ReviewedPostprint (published version

    The valuation of clean spread options: linking electricity, emissions and fuels

    Get PDF
    The purpose of the paper is to present a new pricing method for clean spread options, and to illustrate its main features on a set of numerical examples produced by a dedicated computer code. The novelty of the approach is embedded in the use of a structural model as opposed to reduced-form models which fail to capture properly the fundamental dependencies between the economic factors entering the production process

    Magnetic charge superselection in the deconfined phase of Yang-Mills theory

    Full text link
    The vacuum expectation value of an operator carrying magnetic charge is studied numerically for temperatures above the deconfinement temperature in SU(2) and SU(3) gauge theory. By analyzing its finite size behaviour, this is found to be exactly zero in the thermodynamical limit for any T > T_c whenever the magnetic charge of the operator is different from zero. These results show that magnetic charge is superselected in the hot phase of quenched QCD.Comment: 4 pages, 6 figures, revtex

    Singular diffusion and criticality in a confined sandpile

    Full text link
    We investigate the behavior of a two-state sandpile model subjected to a confining potential in one and two dimensions. From the microdynamical description of this simple model with its intrinsic exclusion mechanism, it is possible to derive a continuum nonlinear diffusion equation that displays singularities in both the diffusion and drift terms. The stationary-state solutions of this equation, which maximizes the Fermi-Dirac entropy, are in perfect agreement with the spatial profiles of time-averaged occupancy obtained from model numerical simulations in one as well as in two dimensions. Surprisingly, our results also show that, regardless of dimensionality, the presence of a confining potential can lead to the emergence of typical attributes of critical behavior in the two-state sandpile model, namely, a power-law tail in the distribution of avalanche sizes.Comment: 5 pages, 5 figure

    Evolution at the edge of expanding populations

    Full text link
    Predicting evolution of expanding populations is critical to control biological threats such as invasive species and cancer metastasis. Expansion is primarily driven by reproduction and dispersal, but nature abounds with examples of evolution where organisms pay a reproductive cost to disperse faster. When does selection favor this 'survival of the fastest?' We searched for a simple rule, motivated by evolution experiments where swarming bacteria evolved into an hyperswarmer mutant which disperses ∌100% \sim 100\% faster but pays a growth cost of ∌10%\sim 10 \% to make many copies of its flagellum. We analyzed a two-species model based on the Fisher equation to explain this observation: the population expansion rate (vv) results from an interplay of growth (rr) and dispersal (DD) and is independent of the carrying capacity: v=2rDv=2\sqrt{rD}. A mutant can take over the edge only if its expansion rate (v2v_2) exceeds the expansion rate of the established species (v1v_1); this simple condition (v2>v1v_2 > v_1) determines the maximum cost in slower growth that a faster mutant can pay and still be able to take over. Numerical simulations and time-course experiments where we tracked evolution by imaging bacteria suggest that our findings are general: less favorable conditions delay but do not entirely prevent the success of the fastest. Thus, the expansion rate defines a traveling wave fitness, which could be combined with trade-offs to predict evolution of expanding populations

    A simple rule for the evolution of fast dispersal at the edge of expanding populations

    Get PDF
    Evolution by natural selection is commonly perceived as a process that favors those that replicate faster to leave more offspring; nature, however, seem to abound with examples where organisms forgo some replicative potential to disperse faster. When does selection favor invasion of the fastest? Motivated by evolution experiments with swarming bacteria we searched for a simple rule. In experiments, a fast hyperswarmer mutant that pays a reproductive cost to make many copies of its flagellum invades a population of mono-flagellated bacteria by reaching the expanding population edge; a two-species mathematical model explains that invasion of the edge occurs only if the invasive species' expansion rate, v₂, which results from the combination of the species growth rate and its dispersal speed (but not its carrying capacity), exceeds the established species', v₁. The simple rule that we derive, v₂ > v₁, appears to be general: less favorable initial conditions, such as smaller initial sizes and longer distances to the population edge, delay but do not entirely prevent invasion. Despite intricacies of the swarming system, experimental tests agree well with model predictions suggesting that the general theory should apply to other expanding populations with trade-offs between growth and dispersal, including non-native invasive species and cancer metastases.First author draf

    Color confinement and dual superconductivity in full QCD

    Get PDF
    We report on evidence that confinement is related to dual superconductivity of the vacuum in full QCD, as in quenched QCD. The vacuum is a dual superconductor in the confining phase, whilst the U(1) magnetic symmetry is realized a la Wigner in the deconfined phase.Comment: 4 pages, 4 eps figure

    The Master Equation for Large Population Equilibriums

    Get PDF
    We use a simple N-player stochastic game with idiosyncratic and common noises to introduce the concept of Master Equation originally proposed by Lions in his lectures at the Coll\`ege de France. Controlling the limit N tends to the infinity of the explicit solution of the N-player game, we highlight the stochastic nature of the limit distributions of the states of the players due to the fact that the random environment does not average out in the limit, and we recast the Mean Field Game (MFG) paradigm in a set of coupled Stochastic Partial Differential Equations (SPDEs). The first one is a forward stochastic Kolmogorov equation giving the evolution of the conditional distributions of the states of the players given the common noise. The second is a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the optimization problem when the flow of conditional distributions is given. Being highly coupled, the system reads as an infinite dimensional Forward Backward Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its Markov property lead to the representation of the solution of the backward equation (i.e. the value function of the stochastic HJB equation) as a deterministic function of the solution of the forward Kolmogorov equation, function which is usually called the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied by this decoupling field is identified with the \textit{master equation}. We also show that this equation can be derived for other large populations equilibriums like those given by the optimal control of McKean-Vlasov stochastic differential equations. The paper is written more in the style of a review than a technical paper, and we spend more time and energy motivating and explaining the probabilistic interpretation of the Master Equation, than identifying the most general set of assumptions under which our claims are true
    • 

    corecore