52 research outputs found

    Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications

    Get PDF
    Altres ajuts: Fondo de Investigaciones Sanitario (FIS); National Institutes of Health (1R01AG056850-01A1, R21AG056974, R01AG061566); Fundació La Marató de TV3 (20141210); Sociedad Catalana de Neurología (SCN-2020 to MCI); Fundació Catalana Síndrome de Down; Fundació Víctor Grífols i Luca; Fundación Tatiana Pérez de Guzmán el Bueno.Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are recip-rocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anato-mopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epilepti-form activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD

    DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients

    Get PDF
    Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS

    Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer's disease : A paired CSF and plasma study

    Get PDF
    Altres ajuts: This work was also supported by the National Institutes of Health (R21AG056974 and R01AG061566 to JF); Departament de Salut de la Generalitat de Catalunya, Pla Estratègic de Recerca i Innovació en Salut (SLT002/16/00408 to AL); Fundació La Marató de TV3 (20141210 to JF, 044412 to RB). Fundació Catalana Síndrome de Down and Fundació Víctor Grífols i Lucas partially supported this work. This work was also supported by Generalitat de Catalunya (SLT006/17/00119 to JF) and a grant from the Fundació Bancaria La Caixa to RB.The discovery that nerve growth factor (NGF) metabolism is altered in Down syndrome (DS) and Alzheimer's disease (AD) brains offered a framework for the identification of novel biomarkers signalling NGF deregulation in AD pathology. We examined levels of NGF pathway proteins (proNGF, neuroserpin, tissue plasminogen activator [tPA], and metalloproteases [MMP]) in matched cerebrospinal fluid (CSF)/plasma samples from AD-symptomatic (DSAD) and AD-asymptomatic (aDS) individuals with DS, as well as controls (HC). ProNGF and MMP-3 were elevated while tPA was decreased in plasma from individuals with DS. CSF from individuals with DS showed elevated proNGF, neuroserpin, MMP-3, and MMP-9. ProNGF and MMP-9 in CSF differentiated DSAD from aDS (area under the curve = 0.86, 0.87). NGF pathway markers associated with CSF amyloid beta and tau and differed by sex. Brain NGF metabolism changes can be monitored in plasma and CSF, supporting relevance in AD pathology. These markers could assist staging, subtyping, or precision medicine for AD in DS

    Challenges associated with biomarker-based classification systems for Alzheimer's disease

    Get PDF
    Altres ajuts: This work was also supported by research grants from the Carlos III Institute of Health, Spain and the CIBERNED program (Program 1, Alzheimer Disease to Alberto Lleó and SIGNAL study, www.signalstudy.es), partly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa". This work has also been supported by a "Marató TV3" grant (20141210 to Juan Fortea and 044412 to Rafael Blesa) and by Generalitat de Catalunya and a grant from the Fundació Bancaria La Caixa to Rafael Blesa. I. Illán-Gala is supported by the i-PFIS grant from the FIS, Instituto de Salud Carlos III and the Rio Hortega grant (CM17/00074) from "Acción estratégica en Salud 2013-2016" and the European Social Fund. USPHS NIH grants awarded to M.J.d.L. include: AG13616, AG022374, AG12101, and AG057570.We aimed to evaluate the consistency of the A/T/N classification system. We included healthy controls, mild cognitive impairment, and dementia patients from Alzheimer's disease Neuroimaging Initiative. We assessed subject classification consistency with different biomarker combinations and the agreement and correlation between biomarkers. Subject classification discordance ranged from 12.2% to 44.5% in the whole sample; 17.3%-46.4% in healthy controls; 11.9%-46.5% in mild cognitive impairment, and 1%-35.7% in dementia patients. Amyloid, but not neurodegeneration biomarkers, showed good agreement both in the whole sample and in the clinical subgroups. Amyloid biomarkers were correlated in the whole sample, but not along the Alzheimer's disease continuum (as defined by a positive amyloid positron emission tomography). Neurodegeneration biomarkers were poorly correlated both in the whole sample and along the Alzheimer's disease continuum. The relationship between biomarkers was stage-dependent. Our findings suggest that the current A/T/N classification system does not achieve the required consistency to be used in the clinical setting

    Periodontal disease's contribution to Alzheimer's disease progression in Down syndrome

    Get PDF
    Altres ajuts: This study was supported by National institutes of Health (NIH)/National Institute on Aging grants AG035137, AG032554, AG12101, AG022374, and AG13616, NIH DE023139-02, Alzheimer's Association NIRG-12-173937, and NIH/NCATS UL1 TR000038. Conflict of interest: No conflict of interest is reported for A.R.K., M.J., P.C., R.G.C., D.S., K.R.C.A., M.R., A.M., J.O.F., S.V., M.C.-I., and B.B. M.J. de Leon has a patent on an image analysis technology that was licensed to Abiant Imaging, Inc., by NYU, and has a financial interest in this license agreement, and NYU holds stock options on the company. M. de Leon has received compensation for consulting services from Abiant Imaging. Dr L. Glodzic was a principal investigator on an Investigator-Initiated project funded by Forest Laboratories and received an honorarium for serving as a consultant to Roche Pharma. Contributors: A.R.K., M.J.de.L., and J.F. wrote the manuscript. All the other authors reviewed the manuscript and contributed with the scientific literature, concepts, and modeling. All authors reviewed the manuscript for intellectual content and approved the final draft.People with Down syndrome (DS) are at an increased risk for Alzheimer's disease (AD). After 60 years of age, >50% of DS subjects acquire dementia. Nevertheless, the age of onset is highly variable possibly because of both genetic and environmental factors. Genetics cannot be modified, but environmental risk factors present a potentially relevant intervention for DS persons at risk for AD. Among them, inflammation, important in AD of DS type, is potential target. Consistent with this hypothesis, chronic peripheral inflammation and infections may contribute to AD pathogenesis in DS. People with DS have an aggressive form of periodontitis characterized by rapid progression, significant bacterial and inflammatory burden, and an onset as early as 6 years of age. This review offers a hypothetical mechanistic link between periodontitis and AD in the DS population. Because periodontitis is a treatable condition, it may be a readily modifiable risk factor for AD

    Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer's disease

    Get PDF
    The role of innate immunity in dementia with Lewy bodies (DLB) has been little studied. We investigated the levels in cerebrospinal fluid (CSF) of glial proteinsYKL-40, soluble TREM2 (sTREM2) and progranulin in DLB and their relationship with Alzheimer's disease (AD) biomarkers. We included patients with DLB (n = 37), prodromal DLB (prodDLB, n= 23), AD dementia (n = 50), prodromal AD (prodAD, n= 53), and cognitively normal subjects (CN, n= 44).We measured levels ofYKL-40, sTREM2, progranulin, A beta(1-42), total tau (t-tau) and phosphorylated tau (p-tau) in CSF. We stratified the group DLB according to the ratio t-tau/A beta(1-42 ) (>= 0.52, indicative of AD pathology) and the A/T classification. YKL-40, sTREM2 and progranulin levels did not differ between DLB groups and CN.YKL-40 levels were higher in AD and prodAD compared to CN and to DLB and prodDLB. Patients with DLB with a CSF profile suggestive of AD copathology had higher levels of YKL-40, but not sTREM2 or PGRN, than those without. T+ DLB patients had also higherYKL-40 levels than T-. Of these glial markers, onlyYKL-40 correlated with t-tau and p-tau in DLB and in prodDLB. In contrast, in prodAD, sTREM2 and PGRN also correlated with t-tau and p-tau. In conclusion, sTREM2 and PGRN are not increased in the CSF of DLB patients. YKL-40 is only increased in DLB patients with an AD biomarker profile, suggesting that the increase is driven by AD-related neurodegeneration. These data suggest a differential glial activation between DLB and AD

    Weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer's disease

    Get PDF
    Weight loss has been proposed as a sign of pre-clinical Alzheimer Disease (AD). To test this hypothesis, we have evaluated the association between longitudinal changes in weight trajectories, cognitive performance, AD biomarker profiles and brain structure in 363 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (mean follow-up 50.5±30.5 months). Subjects were classified according to body weight trajectory into a weight loss group (WLG; relative weight loss ≥ 5%) and a non-weight loss group (non-WLG; relative weight loss < 5%). Linear mixed effects models were used to estimate the effect of body weight changes on ADAS-Cognitive score across time. Baseline CSF tau/AΔ ratio and AV45 PET uptake were compared between WLG and non-WLG by analysis of covariance. Atrophy maps were compared between groups at baseline and longitudinally at a 2-year follow-up using Freesurfer. WLG showed increased baseline levels of cerebrospinal fluid tau/AΔ ratio, increased PET amyloid uptake and diminished cortical thickness at baseline. WLG also showed faster cognitive decline and faster longitudinal atrophy. Our data support weight loss as a non-cognitive manifestation of pre-clinical AD

    Diagnosis of prodromal and Alzheimer's disease dementia in adults with Down syndrome using neuropsychological tests

    Get PDF
    We aimed to define prodromal Alzheimer's disease (AD) and AD dementia using normative neuropsychological data in a large population-based cohort of adults with Down syndrome (DS). Cross-sectional study. DS participants were classified into asymptomatic, prodromal AD and AD dementia, based on neurologist's judgment blinded to neuropsychological data (Cambridge Cognitive Examination for Older Adults with Down's syndrome [CAMCOG-DS] and modified Cued Recall Test [mCRT]). We compared the cutoffs derived from the normative data in young adults with DS to those from receiver-operating characteristic curve (ROC) analysis. Diagnostic performance of the CAMCOG-DS and modified Cued Recall Test (mCRT) in subjects with mild and moderate levels of intellectual disability (ID) was high, both for diagnosing prodromal AD and AD dementia (area under the curve [AUC] 0.73-0.83 and 0.90-1, respectively). The cutoffs derived from the normative data were similar to those derived from the ROC analyses. Diagnosing prodromal AD and AD dementia in DS with mild and moderate ID using population norms for neuropsychological tests is possible with high diagnostic accuracy

    Cerebrospinal fluid profile of NPTX2 supports role of Alzheimer's disease-related inhibitory circuit dysfunction in adults with down syndrome

    Get PDF
    Alzheimer's disease (AD) is the major cause of death in adults with Down syndrome (DS). There is an urgent need for objective markers of AD in the DS population to improve early diagnosis and monitor disease progression. NPTX2 has recently emerged as a promising cerebrospinal fluid (CSF) biomarker of Alzheimer-related inhibitory circuit dysfunction in sporadic AD patients. The objective of this study was to evaluate NPTX2 in the CSF of adults with DS and to explore the relationship of NPTX2 to CSF levels of the PV interneuron receptor, GluA4, and existing AD biomarkers (CSF and neuroimaging). This is a cross-sectional, retrospective study of adults with DS with asymptomatic AD (aDS, n = 49), prodromal AD (pDS, n = 18) and AD dementia (dDS, n = 27). Non-trisomic controls (n = 34) and patients with sporadic AD dementia (sAD, n = 40) were included for comparison. We compared group differences in CSF NPTX2 according to clinical diagnosis and degree of intellectual disability. We determined the relationship of CSF NPTX2 levels to age, cognitive performance (CAMCOG, free and cued selective reminding, semantic verbal fluency), CSF levels of a PV-interneuron marker (GluA4) and core AD biomarkers; CSF Aβ1-42, CSF t-tau, cortical atrophy (magnetic resonance imaging) and glucose metabolism ([18F]-fluorodeoxyglucose positron emission tomography). Compared to controls, mean CSF NPTX2 levels were lower in DS at all AD stages; aDS (0.6-fold, adj.p 0.07). Low CSF NPTX2 levels were associated with low GluA4 in all clinical groups; controls (r 2 = 0.2, p = 0.003), adults with DS (r 2 = 0.4, p 0.3, p 0.3, p < 0.001), increased cortical atrophy (p < 0.05) and reduced glucose metabolism (p < 0.05). Low levels of CSF NPTX2, a protein implicated in inhibitory circuit function, is common to sporadic and genetic forms of AD. CSF NPTX2 represents a promising CSF surrogate marker of early AD-related changes in adults with DS

    Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors

    Get PDF
    Altres ajuts: This work has also been supported by a "Marató TV3" grant (20141210 to J.F. and 044412 to R.B.).Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS
    corecore