15 research outputs found

    A secreted fluorescent reporter targeted to pituitary growth hormone cells in transgenic mice.

    No full text
    In stable transfection experiments in the GH-producing GC cell line, a construct containing the entire signal peptide and the first 22 residues of human GH linked in frame with enhanced green fluorescent protein (eGFP), produced brightly fluorescent cells with a granular distribution of eGFP. This eGFP reporter was then inserted into a 40-kb cosmid transgene containing the locus control region for the hGH gene and used to generate transgenic mice. Anterior pituitaries from these GH-eGFP transgenic mice showed numerous clusters of strongly fluorescent cells, which were also immunopositive for GH, and which could be isolated and enriched by fluorescence-activated cell sorting. Confocal scanning microscopy of pituitary GH cells from GH-eGFP transgenic mice showed a markedly granular appearance of fluorescence. Immunogold electron microscopy and RIA confirmed that the eGFP product was packaged in the dense cored secretory vesicles of somatotrophs and was secreted in parallel with GH in response to stimulation by GRF. Using eGFP fluorescence, it was possible to identify clusters of GH cells in acute pituitary slices and to observe spontaneous transient rises in their intracellular Ca2+ concentrations after loading with Ca2+ sensitive dyes. This transgenic approach opens the way to direct visualization of spontaneous and secretagogue-induced secretory mechanisms in identified GH cells

    Comparison of pulsatile vs. continuous administration of human placental growth hormone in female C57BL/6J mice

    No full text
    Exogenous growth hormone has different actions depending on the method of administration. However, the effects of different modes of administration of the placental variant of growth hormone on growth, body composition and glucose metabolism have not been investigated. In this study, we examined the effect of pulsatile vs. continuous administration of recombinant variant of growth hormone in a normal mouse model. Female C57BL/6J mice were randomized to receive vehicle or variant of growth hormone (2 or 5 mg/kg per day) by daily subcutaneous injection (pulsatile) or osmotic pump for 6 days. Pulsatile treatment with 2 and 5 mg/kg per day significantly increased body weight. There was also an increase in liver, kidney and spleen weight via pulsatile treatment, whereas continuous treatment did not affect body weight or organ size. Pulsatile treatment with 5 mg/kg per day significantly increased fasting plasma insulin concentration, whereas with continuous treatment, fasting insulin concentration was not significantly different from the vehicle-treated control. However, a dose-dependent increase in fasting insulin concentration and decrease in insulin sensitivity, as assessed by HOMA, was observed with both modes of treatment. At 5 mg/kg per day, hepatic growth hormone receptor expression was increased compared to vehicle-treated animals, by both modes of administration. Pulsatile variant of growth hormone did not alter the plasma insulin-like growth factor-1 concentration, whereas a slight decrease was observed with continuous variant of growth hormone treatment. Neither pulsatile nor continuous treatment affected hepatic insulin-like growth factor-1 mRNA expression. Our findings suggest that pulsatile variant of growth hormone treatment was more effective in stimulating growth but caused marked hyperinsulinemia in mice
    corecore